
 COVID-19 SIR, SQEAIR, DDE Sigmoidal Models
Created with Mathcad 14 Math Software: Documentation, Model Creation, and Math Calculations 

Mathcad Program File (COVID-19 SIR Sigmoid Model.xmcd) and Data can be found at:  VXPhysics.com/COVID-19

This work was sparked by the desire to understand the basic dynamics of the Novel
COVID-19 Pandemic. With the exception of the Sigmoidal Incidence Model that was created,
this work is mostly a review of existing research. This is not a formal paper and attribution to

sources are sketchy. Epidemiological models are commonly stochastic, diffusive-spatial,
network based, with heterogeneous sub-populations. However, the parameters of Dynamic

Equation Models, such as SIR and SQEAIR, are more directly related to and interpretable as
physical processes. The intent of this work was to build a simple epidemiological "toy model"
to estimate the period before the peak infection and the total number of infected cases. The

methodology employed was, first, application of Dynamic Deterministic Discrete SIR, SEIR,
& DDE Models to characterize infection data from Wuhan China, USA, UK, Italy, Spain, N.

Korea, NY, FL, New Orleans. Next, a Sigmoidal Incidence Function was used to give an
Empirical Transmission/Contact Model that can successfully fit the observational data from
China. The Levenberg-Marquardt Method was used to extract the Empirical Epidemiological

Parameters of the Epidemic Isolation Policies that were successfully employed by China and S.
Korea. The insights gained from analysis of these successful interventions were then used to

Analyze and Predict Results for the Mitigation Policies of the US, NY, & UK.
NOTE: Current State of Modeling is such that projections are "good" for only about 2 weeks. 
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 Particulars of the Methodology for the COVID-19 Investigation

This work starts with a general description of the SARS-CoV-2 Virus and the associated COVID-19
disease. Its Epidemiology (Transmission and Model Parameters), Infection Cycle, Risks, and Estimate of
Required Hospital Services are investigated.

Next the SIRD and SEIRD Mathematical Models and their parameters, and general epidemiological
behavior are discussed. Also, the basic assumptions of the SIRD/SEIR models are examined. The model is
demonstrated by its application to a typical flu season. The detailed characteristics of a typical flu season and
the range of its parameters are discussed. We will use whichever model (SEIR or SIR) works best.

COVID-19 outbreaks in Wuhan China, NY, USA, FL, New Orleans, UK, Italy, Spain, N. Korea, and the
World are presented. This was done in the following fashion. First, data on the total infections for each region
were obtained.  The rate of change, days to double, and a fit  to the data with two types of exponential
curves was made. The data was plotted with two types of exponential curve fits and with the number of new
cases of infection. The infection data on a semi-log plot to observe its exponential behavior were also plotted.
A fundamental and key concept in epidemiology and demograpy is the Basic Reproduction Number, R0.  It is

a threshold, and it is defined such that if R0 > 1, the infectious disease will result in an outbreak, i.e. unstable
exponential growth.  R0 < 1 would  imply its disappearance. R0 is the ratio new secondary/primary infections.

A Sigmoidal Transition Model was created to model Mitigation by Governmental Intervention.
An attempt was made to do a spatial analysis by looking at the model behavior in all 50 states.   Estimates of
the Reproduction Number, R0, for each of the states were made. However, keeping up with, aggregating,

updating, processing, and doing a spatial analysis in a timely manner was beyond the time and scope of this
basic investigation. 

A deeper investigation on the outbreaks in Wuhan, NY, USA, and the UK was made. For these locations,
the parameters for the SIRD infection model were abstracted. Using the SIRD model and abstracted
parameters, observations on how well the model compares with the infection data, and  the projected
behavior/growth of the epidemic was made. The model gave Projected Numbers of the Susceptibles,
Infections, Recovered, and Fatalities.  

The inital projected numbers for infections and deaths were horrendous. Projections gave 2 million
deaths in the US. These initial models agreed with the assessment of other earlier epidemiological models.
Clearly, governmental intervention was needed to reduce these epidemic numbers.

Based on interventions in Wuhan China, a Sigmoidal Model was created for this investigation to reflect the
effects of the Wuhan intervention. This intervention model was then applied to our SIRD epidemiological
model.  A preview of the model results/plot is shown at the bottom of the following page. It is formulated to
model the reduction in the transmission rate, β,  resulting from the intervention. 

 COVID-19 Situation (April 8, 2020) of the World at Large
Epidemiological Mathematical Models are important. They are based on our knowledge of the dynamics of
epidemics. Often, there are phenomena that can only be comprehended with math models. Generalization
models have been used to estimate the demand for hospital beds, ICU days, number of ventilatores and also,
importantly, the need and required extent of governmental intervention.  To date, the number of infections and
deaths are far below the projections of earlier models. A Model is only as good as the assumptions put into
the Model.  Clearly, there are phenomena of the COVID-19 epidemic that are as yet not understood.
Models are constantly being updated and improved. 

The story of the COVID-19 outbreak is ongoing. Our knowledge of this novel virus, is in a state of flux.
Every week seems to bring additional important medical and epidemiological information. 



 Preview: Mitigation Models for China, S. Korea, USA
 Shows Daily Match Between Infection Data (Blue  ▲ ) vs Sigmoidal Model (Blue Line)

See Pages 18, 36, and 27 for the Methodology to Extract Mitigation Model Parameters

What is the predicted infection rate after the April 17th peak? We see that in 30 days, a month later, May 19th,
the number of infections drops down to 11% of the peak, but this is a very very big number. 



 General Description of Virus and Conclusions
 Some Characteristics of the COVID-19 Disease

   

The SARS-CoV-2 Virus is an enveloped, single-standed RNA virus. It is commonly referred to by the name of
the disease it causes, which is COVID-19. The later name was choosen by the WHO for PR purposes. This
virus was first discovered in China by observing that hospital patients were showing a very virulent type of
pneumonia. (Historically, the most general cause of pneumonia  the Streptococcus pneumoniae bacerium.)
Currently, according to the CDC, the incubation period for the novel coronavirus is somewhere between 2 to
10 days after exposure, mean. More than 97 percent of people who contract SARS-CoV-2 show
symptoms within 11.5 days of exposure. The average incubation period seems to be around 5.2 days.
For many people, COVID-19 symptoms start as mild symptoms and gradually get worse over a few days.
Transmission occurs primarily: via respiratory droplets from coughs and sneezes within a range of about 6
feet (1.8 m). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary
research indicates that the virus may remain viable on plastic and steel for up to three days, but does not
survive on cardboard for more than one day or on copper for more than four hours. Models show that 1/3
each of transmission occurs in household, schools-workplaces, and in the community. 

 Additional Data on Model Parameters:
The paper: "The effect of travel restrictions on the spread of the 2019 novel coronavirus outbreak", by Ira M.
Longini and Alessandro Vespignani give the  following data for the World Pandemic. A generation time (Tg )

ranging from 6 to 11 days based on plausible ranges from the SARS epidemic and recent analysis of COVID-19
data. The results for generation time Tg  = 7.5 days. The obtained posterior distribution provides an average

reproductive number R0  = 2.57, and a doubling time measured at Td = 4.2 days. 
  

They reported that  that the median ascertainment rate of detecting an infected individual in Mainland China is equal
to 24.4%. In other words, the modeling results suggest that in Mainland China only one out of four cases are
detected and confirmed.  Studies in Germany suggest only 6% of cases are reported.  A recent study in the US,
suggests that as few as 2% of infections are confirmed.  Reported Cases, at best, are only 10% of Actual Number.

 Let Q equal the % of the Population that, if Infected, could be Reportable Cases. Q 10 %:=

Allowing for a 7 day incubation period, Baysian Spectral  Fusion Analysis of 5 countries shows wavelengths of
2.7, 4.1, and 6.7 days. After lockdown the 2.7 and 4.1 day cycles are surpressed, suggesting that they are related
to virus dynamics. See: Rapidly evaluating lockdown strategies using spectral analysis,  Nason.
 

In reality, model parameters, such as R0, have different types of statistical distributions. The generation interval

distribution for an infectious disease is the probability distribution function for the time from infection of an individual
to the infection of a secondary case by that individual. Generation interval distributions uniquely characterize the
relationship between the reproductive number R and the growth rate r. Different infectious diseases have at least 5
different possible distributions. See: How generation intervals shape the relationship between growth rates
and reproductive numbers, Wallinga.

 The Susceptible, Infected, Recovered (SIR) Model
COVID-19  has a latent or incubation period, during which the individual is said to be infected but not infectious.
Members of this population in this latent stage are labelled as Exposed (but not infectious).  The model with this
Exposed group is the Susceptible, Exposed, Infected, Recovered, SEIR Model. However, for this study, given the
decision to use a deterministic discrete differential equation model and the limited amount of data, the model that
most successfully matched the published Confirmed Infectious Case Data is the SIR model. 

We will use an SIR Model for Wuhan and the USA. This is shown two pages after this. For the Wuhan
Virus , we found that the Basic Reproductive Ratio, R0, was 2.74 and that the time to recover is 41 days, days to

double of 3.62==>Exponential Transmission.  During the initial exponential phase of growth, the USA data
gave the number of days for infections to double as 2.309 and the Basic Reproductive Ratio as 2.74.



 Epidemic Spread: Factors, Herd Immunity,  Prognosis
                                        Infectious Disease Dynamics,  Derek Cummings

• The number of individuals infected by each infectious case. (R0 )
• The time it takes between when a case is infected and when that case infects other people.

Difference in the Serial Interval   
   The average length of time between when a case is infected and when s/he infects others, 
   This serial interval is different for these two pathogens

– Influenza ~2.5 days
– Measles ~ 18 days

      A Third Factor, θ
• Defined as the proportion of transmission occurring prior to symptoms
• Measure of how much shorter latent period is than incubation period
• Proposed by Fraser and colleagues

 Reproduction Ratio, R0: Example - Sexually Transmitted Infection
   R0 =  α x c x β

    β is the proportion of contacts that become infected
    c is the number of contacts per day
    β is the duration of infectiousness

 Estimates of R0 of several pathogens
Measles – 12
Pertussis – 15
Chicken Pox – 9
Diphtheria – 4
Schistosoma japonicum – 3

 Death Rate, Extent
Flu: 0.1%,  8%/year
COVID-19: 0.5%, 70%

Scarlet Fever – 6
Mumps – 10
Rubella – 8
Polio – 6

Smallpox – 6
Influenza – 2
HIV – 5
Dengue – 4

Could also use a proxy for infectiousness, viral load ==>
in infectiousness, viral load in oropharyngeal secretions, 
for example 

 Targeted interventions to stop transmission depend upon  being able to identify cases
• Isolation, quarantine, screening travelers,prophylactic use drugs all depend on identifying people before transmit

• Delays dramatically reduce effectiveness 
– if your interventions don’t identify people until after they’ve done the bulk of their transmission, they don’t work
• The serial interval identifies the time-scale of response 
• How quickly can we identify cases?

 The Critical Immunization or Infection Rate to Eradicate a Disease ( Herd Immunity % )

             Herd Immunity %
Measles and whooping cough, 90-95%
chicken pox and mumps 85-90% coverage 
polio and scarlet fever 82-97% coverage
smallpox 70-80% coverage

HI R0( ) 100 1
1

R0
-








:=
HI 2.8( ) 64.286=

 US Herd Immunity:  This projects to 200 million infected in USA.

 PROGNOSIS:
When social isolation ends, the epidemic will start up again. Based on our current knowledge of the virus, 
without social isolation or a vaccine, the number of potential infections in USA is still 200 million. 
It is still very infectious.  It will probably be two years before the epidemic is under control in the US. 

 COVID-19 Herd Immunity %



 COVID-19 Epidemiology State of Flux (Time Dependent)

 Perspective  on Number of COVID-19 Deaths in USA
Categories of Annual Deaths in the US

2,813,503 registered deaths (8,000/year) in the United States in 2017 

Heart Disease:  647,000/  23.5%
Cancer: 99,108/  21.3%
Unintentional injuries: 169,936/  6%
Chronic lower respiratory disease: 160,201/  5.7%
Stroke and cerebrovascular diseases: 146,383/  5.2%

Alzheimer's disease: 121,404/  4.3%
Diabetes: 83,564/  3%
 COVID-19: 82,000/ 3%
Influenza and pneumonia: 55,672/ 2%
Suicide: 47,173

 April 7, 2020:  IHME Revised Estimate of Number of COVID-19 US Deaths:
82,000 deaths from the first wave of infection, although the number could range from 49,000 to 136,000.

 Model Limitations: Old  February 2020   AHA COVID-19 BEST GUESS 
 2020 Webinar of the American Hospital Association (AHA)

   

*  R0 = 2.5; Doubling time 7-10 days Community epidemic  wave 2 months

*  Community attack rate = 30-40% US: 96 million cases (27% Population)
*  Cases requiring hospitalization = 5% US: 4.8 million admissions
*  Cases requiring ICU care = 1-2% US: 1.9 million ICU
*  Cases requiring ventilatory support = 1% US: 1 PPV
*  CFR = 0.5% US: 480,000 deaths 

 Study: Nowcasting and Forecasting the International Spread of COVID-19 
Nowcasting and forecasting the potential domestic and international spread of the 
2019-CoV outbreak originating in Wuhan, China: a modeling study, Wu, Leung, January 31, 2020

 Nowcasting Findings:
In  our  baseline  scenario, we estimated  that  the basic reproductive  number  for  2019-nCoV was  2.68
Confidence Level (95% CL 2·47–2.86) and that 75,815 individuals (95% CL 37 304–130 330) have been
infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6.4 days (95% CL 5·8–7·1). We
estimated that in the baseline scenario,  Chongqing,  Beijing,  Shanghai, and  Shenzhen  had  imported  461
(95% CL  227–805), 113 (57–193), 98 (49–168), 111 (56–191), and 80 (40–139) infections from Wuhan,
respectively. If the transmissibility of 2019-nCoV  were  similar  everywhere  domestically and  over  time,  we
inferred  that  epidemics  are  already growing exponentially in multiple major cities of China with a lag
time behind the Wuhan outbreak of about 1–2 weeks.
Nowcasting and forecasting the potential domestic and international spread of the 
2019-nCoV outbreak originating in Wuhan, China: a modeling study, Wu, Leung, January 31, 2020

Transmission occurs primarily via respiratory droplets from coughs and sneezes within a range of about 6
feet (1.8 m). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary
research indicates that the virus may remain viable on plastic and steel for up to three days, but does not
survive on cardboard for more than one day or on copper for more than four hours

The incubation period of COVID-19 can last for 2 weeks or longer.
Incubation  rate  σ,  is  the  rate  of  latent  individuals  becoming  infectious.  
Given  the  known average duration of incubation Y, σ = 1/Y. 
The average incubation duration us 5.2 days. 
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Where the function Y is the Gaussian error function (written explicitly above), 
p controls the maximum death rate at each location, 

t is the time since death rate exceeded 1e-15, 
ß (beta) is  location-specific inflection point (time at which rate of increase of the death rate is maximum), and 
α (alpha) is a location-specific growth parameter.
 
Other sigmoidal functional forms (alternatives to Y) were considered but did not fit the data as well. Data were fit
to the log of the death rate in the available data, using an optimization framework described in the appendix.  

The date of peak excess demand by state varies from the second week of April through May. We estimate that
there will be a total of 81,114 (95% UI 38,242 to 162,106) deaths from COVID-19 over the next 4 months in
the US. Deaths from COVID-19 are estimated to drop below 10 deaths per day between May 31 and June 6.  
Given current estimates of the basic reproductive rate (the number of cases caused by each case in a susceptible
population), 25% to 70% of the population will eventually become infected. Based on reported case-fatality
rates, these projections imply that there would be millions of deaths in the United States due to COVID-19.

A covariate of days with expected exponential growth in the cumulative death rate was created using information
on the number of days after the death rate exceeded 0.31 per million to the day when 4 different social
distancing measures were mandated    
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 Projection: Excess demand for services above capacity available currently

 IHME COVID-19 health service utilization forecasting team 
Forecasting COVID-19 Impact on Hospital bed-days, ICU-days, 

Ventilator-days and deaths by US state in the next 4 months

 Estimate for Required Hospital Needs Generated April 2, 2020
 Goal: 
Develop a statistical model forecasting deaths and hospital utilization against capacity by state for the US over the
next 4 months. 

 Statistical model for the cumulative death rate.
 We developed a curve-fitting tool to fit a nonlinear mixed effects model to the available admin cumulative death
data. The cumulative death rate for each location is assumed to follow a  parametrized Gaussian error function:



 SIR Compartmental Disease Transmission Model:   Susceptible,  Infected, Removed
 Data-Based Analysis, Modeling and Forecasting of the COVID-19 outbreak
https://www.medrxiv.org/content/10.1101/2020.02.11.20022186v4.full.pdf  - March 5, 2020

 Phenomena involving rates of change often can only be comprehended through Mathematical Models. 
The oldest and most common Epidemiological Model is the SIRD model, consisting of a set of four coupled
nonlinear differential equations, which assigns every person in a population to be in one of 4 conditions or
categories. The advantage of SIR model over more detailed models, is that SIR uses only known surveillance data. 
   S = Susceptible to becoming infected. S0, Initial population  (initial # of people who are susceptible),

   I  = Infected through contact with someone already infected. I0, Initial number of infected people 

   R = Removed or Removal Group, either in isolation or dead, or no longer sick or infected. 
   D = Fatalities   
    

Through time a person may move from being Susceptible to Infected to Removed, so that the number of people
in each category changes, but the total of S + I + R remains some constant, N. 
   

This is a Compartmental Model, with S,I, R, and D being compartments of subpopulations. Every person starts off
in a given compartment and may then, in time, move to another. Graphically the compartment model looks like the
plots  starting on page 11,  with the rates of movement between the compartments designated by the parameters: α,
β, and γ.
   

This model assumes that once someone recovers they are immune and can’t be infected again.  The model also
assumes that a disease is passed from person to person. The SIRD model can’t be used for diseases that spread by
other modalities, such as eating exotic animals or being bitten by insects.

REMEMBER:  A Model is only as good as the assumptions put into the Model.

Potential Error Sources: There are two major of potential sources of error: Process Error and
Observation Error. The source of Process Error is the disease dynamics. It is inherently stocastic.

The observation error is the error in the observation process. A number investigations  to
measure the true rate of  COVID-19 infections have been done. Actual cases may be 10 to 50
times larger than reported.  The major source of error is observational.

 Epidemiological Parameters (Different Author May Use Different Symbols)
Infection rate,          β:  Transmission rate, rate (number per day) that susceptible people become infected
Recovery rate,         γ:  Recovery rate (number per day) that infected people recover. Portion - Removal Rate
                                  CDC - Flu in USA: 36 million flu illnesses, 370,000 hospitalizations & 22,000 deaths.

NOTE:                Since the population size, N, is constant,
N = S + I + R               these constraints can be used to 
N = S + E + I + R         eliminate the equation for R in the Models.



 Deterministic Mathematical Modeling of Disease

 Bio-mathematical deterministic treatment of the SIR or SEIR model
This SIR system of ordinary differential equations is non-linear, and does not admit a
generic analytic solution. Nevertheless, significant results can be derived analytically.

 I nitially, when S ~ N

I t( ) I0 e
β γ-( ) t

=

 Continuous SIRD Model: System of Differential Equations, DE
Given δ 0.005:=  Initial Conditions: Terminal Point, T: 

T 40:=
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N
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 System of Ordinary Differential Equations
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 SEIR Model (E is Exposed)  Infection Cycle Outcomes
 MedCram: COVID Pandemic Update 49: New Data COVID-19 vs Other Viral Infections (Ventilator Outcomes)

SEIR has two (EI) infected Classes.
30% of all transmissions occur from
symptomatic or minimally
symptomatic carriers. 

   Note: 
A SEIR model does not give a good
fit for Confirmed Infection 
Case data, which manifests only
when the carrier is symptomatic. 

 Transition Rates of SIR Movement between adjacent Compartments
• The terms dS/dt , dI/dt , dR/dt in the Nonlinear Differential Equations indicate
the rates of change of the susceptible population size, the infected population size
and the Removed population size, respectively. It is a mechanistic model.
• The term β is the transmission rate and β ~ 2.8 *1/10 days =0.199
• The rates are nonlinear, determined by the law of mass action, rate ~ β I S
• 1/γ is the period when infected people are contagious.
• High value of β means the epidemic will spread quickly.
• γ recovery rate (inverse of the number of days until recovery (1/β)
• The median number of days until recovery is about 6.8 days: γ = 1/6.8
• High value of γ means a person will remain infected for more days
• SIR model basic reproduction number, R0 = β/γ when everyone is susceptible.

• Rate at which compartments move from one to another depends on the fraction
  of population in each compartment and transmission rate, β and recovery rate, γ.
  The SIR model does not allow for those who are exposed, but not infected or
   infected but asymptomatic, or time period when latent and also infectious.



 Continuous SEIR Model
This is an SEIR Model for China Data from Mathematica: "SEIR model of the coronavirus infection in China"

Mathematica Notebook:   SEIR model C 27 march 2020.nb
https://community.wolfram.com/groups/-/m/t/1888335

InfM READPRN "China Cases -SEIR MMica-13332.txt"( ):= RecM READPRN "China Recovered -SEIR MMica.txt"( ):=

Rc rows InfM( ):= Rc 68= m 1 Rc 1-..:= IR
m

InfM
m

RecM
m

-:=

Ifnc
m

InfM
m

InfM
m 1--:=

SEIR S0 I0, E0, β, ε, γ, N, ( ) τ 1.1:= Terminal Point, T: 
T 100:= n 0 140..:=

 Continuous SEIR Model: System of Differential Equations, DE
Given  Initial Conditions:

t
S t( )d

d
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N
= S 0( ) 80900=

 Mathematica/Maple SEIR DDE 
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 Mathcad Odesolve Solver:  Solution for a System of Ordinary Differential Equations

DE_SEIR S0 E0, I0, R0, β, ε, γ, N, T, ( ) Odesolve
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S E I R( ) DE_SEIR 80899 1, 1, 0, 4, 0.1, 0.0478, 80900, 100, ( )T:=
t 0 140..:=

 Good Match Between Data and DDE SEIR Model
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 Mathematica Solution Plot -See Next Page



 Difference Compartmental Models: SEIR Delayed (Maple) v.s. Mathcad SEIR No Delay
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 This Delayed SEIR Model was developed in Mathematica and Executed in Maple:
"SEIR model C 27 China march 2020.nb"    From Mathematica

NOTE: The Mathematica and Maple Delayed SEIR Plots are Identical. 

 Mathematica/Maple SEIR Model Equations
                    with 2 Delay Times
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 Algorithms to Calculate the Values of S, I, R, D  and S, E, I, R from Model Parameters
 Governmental Mitigation is not Modeled

 Outputs S, E, I, R, but Shown without the R term below

β 0.2:= γ 0.10:=
1

γ
10= δ 0.005:= R0

β

γ δ+
:= R0 1.905=Typical Flu Outbreak Parameters:

A typical flu season lasts about 35 weeks (245 days). Week 1 generally is the first week of October and lasts
until week 35 or the end of May. See plots of a typical flu season on the following page.
  

The basic reproductive ratio, R0 is defined by epidemiologists as "R0" represents the average number of

secondary cases that result from the introduction of a single infectious case in a totally susceptible population
during the infectiousness period". The product of the infection rate and mean infection duration.

As such R0 can tell us about the initial increase of number of the those infected/carrier over a generation. 

A typical flu season lasts about 35 weeks (245 days). Week 1 generally is the first week of October and lasts
until week 35 or the end of May. See plots of a typical flu season on the following page.
  

The basic reproductive ratio, R0 is defined by epidemiologists as "R0" represents the average number of

secondary cases that result from the introduction of a single infectious case in a totally susceptible population
during the infectiousness period". The product of the infection rate and mean infection duration.

As such R0 can tell us about the initial increase of number of the those infected/carrier over a generation. 

 Let's look at the example of a typical flu season virus outbreak, α, β, γ, R0

 Discrete SIRD and SEIR Models - Infectious Disease Outbreak Equations
 The number of people at any day, n,  who are:
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 Compare Solutions: SID Parameters for Typical F lu Virus

The Flu Season parameters are β = 0.2 and γ = 1.4. Sfinal is about 0.52 and Infected peaks at 0.024.

If S0 < β/λ then Infections decrease monotonically to zero - this designates the season as nonepidemic. 

Below is a model for a typical flu virus. Because of mutation, new strains of influenza make most
people susceptible (Sn, α= 29%) at the beginning of an outbreak. Interestingly, it shows that the
number of infected people (blue curves) has reached a peak after about 54 days (7 1/2 weeks) and
then falls to after 100-120 days (3 - 4 months). 

This demonstrates that the SIR model is a good representation for a flu season.

 Compare Solution Methods

 Continuous Solution: S I R D( ) DE_SIR 999 1, 0, 0, β, γ, 1000, 120, ( )T:= t 0 0.01, 120..:=

NOTE: The Continuous Model gives the total number of dead. So D does not hide I in plots, Discrete gives New Deaths.

 Discrete Solution: FluSIRD SIRD 999 1, β, γ, δ, 130, ( ):= n 0 130..:=

Sd FluSIRD 0 
:= Id FluSIRD 1 

:= Rd FluSIRD 2 
:= Ded FluSIRD 3 

:=

 Compare Continuous vs. Discrete Solutions
Percent Difference at the Infection Peak: 

ΔPC I 70( ) Id70
-





100

I 70( )
:= ΔPC 2.119-=

Given the uncertainty in Epidemic Data, a 2.1% difference is acceptalble

Note that there two different sized scales, the scale shown at the left is larger than the one at the right.
    

The S, I, R solutions are shown with the scale on the left,                          Scale Max = 1000
The black curve for the number of deaths uses the scale on the right only.  Scale Max = 10  
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From Flu: Notice the number of infections drops off with the flu season.

 Susceptible                Infected                     Removed                       Dead



The number of those that are susceptible drops below new infections

 SIR Model Normalized: Flu Season 2002-2007 and 2010-2013

 Parameters and graphs are from the paper:  "Forecasting seasonal influenza with a state-space SIR model", 2017
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DE_SIR 0.9 0.0002, 0, 0, 0.2, 0.14, 0.9, 240, ( ):=

t 0 0.1, 240..:=

 Plots From :  " Forecasting seasonal influenza with a state-space SIR model ", Osthus 

0 40 80 120 160 200 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

Flu: Susceptible

Number of Days

S t( )

I t( )

R t( )

I t( )

t

 Plot of Fraction of Infections/S0 for 
 Flu seasons 2002-2007 and 2010-2013 

125

7
17.857=Season: 35(Wks) x 7 = 245 days

NOTE: In the below Osthus paper, R0 represents the proportion of the population in the recovered

compartment at time t = 0 for the SIR model and does not represent the “basic reproductive number” 

Simulated SIR Curve with S0 = 0.9, I0 = 0.0002, R0 = 0.0998, α = 2, and β = 1.4

 Sus (Red), Infected (Blue), Removed (Green), Dead (Black)



 Some Different Possible Compartmental Models

No One Model is Superior to the Others.  They all have their uses. It all depends on the application or goal. 
The SIR model, generally, is the only one in which all the compartments (S, I, R) are observable and documented.

 Classical  SIR Model of an Epidemic:  S usceptible, Infectious, and Recovered

S                                    I                                    R

S               E                      I                             R

 Here is an Extension of the SEIR Model, the SQEAIRD Model 
 Proposed by Jai for Modeling the Wuhan COVID-19 Epidemic Control Policy

Modeling the Control of COVID-19: 
Impact of Policy Interventions and Meteorological Factors, Jai

This Model was extended to include the influence of Quarantine (Q) and Non-Infectious Asymptomatic Hosts , A.
A more comprehensive model would also include Infections by Asymptomatic Hosts. 

 SQEAIR Quarantine Model

 Compartmental Model: Transmission Spread Dynamics
Some models may have many more compartments to account
for heterogeneity. For example: "A mathematical model
(Network) for simulating Transmission COVID" has 14.
Some models may have compartments for demographic
characteristics (age, gender, location), different modes of
transmission, mitigation policies, zoonotic routes, symptoms,
types of hospitalization, public risk avoidance behavior, states
of infectiouness, or different methods of case confirmation.

 Classical  SEIR Model:  S usceptible, Exposed (Latent), Infectious, Recovered



 COVID-19 SIRD Data, Model & Predictions Hubei Province, China
An outbreak of “pneumonia of unknown etiology” in Wuhan, Hubei Province, China in early December
2019 has spiraled into an epidemic.  The virus is SARS-CoV-2, a coronavirus.
Simulations until the 29th of February of the cumulative number of Removed as obtained using the SIRD
model. Dots correspond to the number of confirmed cases from the 16th of January to the 10th of
February. The initial date of the simulations was the 16th of November with one infected, zero Removed
and zero deaths. Solid lines correspond to the dynamics obtained using the estimated expected values of
the epidemiological parameters 

S0 = 59 x 106, β = 0.193, γ = 0.063/day , δ = 0.01;

 Data from Hubei Province China from 1-22-2020 to 3-12-2020 - Population 58.5 Million

China READPRN "OWiD China  19 Jan - April 12.txt"( ):=
Hubei READPRN "K-COVID19-Hubei-Complete.txt"( ):= HPop 58.5 10

6
:= rows Hubei( ) 51=

Data from Kaggle    https://www.kaggle.com/kimjihoo/coronavirusdataset     
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SIRD(S0,I0,β,γ,δ,N ) W19 SIRD 59 10
6

 444, 0.193, 0.063, 0.01, 40, ( ):=

 Susceptible-Sus,        Infected - Inf,           Removed - Rec            Dead - D

Model Results: Sus W19 0 
:= Inf W19 1 

:= Rec W19 2 
:= Ded W19 3 

:=

Inf
40

41252.059= β 0.193:= γ 0.063:= δ 0.01:=

Infected Dead Removed

 Calculate SIRD Model Values for Wuhan of COVID-19 to Feb 10, 2020



 Mitigation: Rationale for Phase Transition, Segmented Terminate, Function
The spread of a disease is a physical process with many different contributing factors. Some examples of different
types of physical growth are found in processes such as: the law of mass action, growth in a petri dish, crop
growth, population growth, nuclear reactions, and current saturation in an a MOSFet transistor. As a
generalization, there are three approximate phases of growth: exponential growth, linear transition, and saturation.
Saturation occurs when a growth system runs out of finite buildable land area for the growth of cities. Extended
growth has occurred for 50 years in the semiconductor industry.  This has been fueled by extensive research which
resulted in extended sequences of sigmoidal growths of one technology succeeded by a new one.

Different researchers have added their own wrinkles to functional growth such as asymmetrical growth, an
inflection point, and application of limits/bounds through integration. There is a plethora of Functional Growth
Distributions: sigmoidal, logistic growth, beta function, expolinear, and eponymous functions such as: Gompertz,
Richards, Weibull, and Goudriaan. More abstract formulations based on Physics (Hamiltonian, Wave Velocity),
and a host of statistical distributions and curve fitting formulations. There are a variety of different approaches:
deterministic, stochastic, Markov Chain, numerical, discrete, linearization, network theory, engineering solutions,
and approaches such as control theory. Recently, there has been an explosion and spectacular accomplishments in
the application of neural networks and big data techniques to challenging problems. Problems can also be crunched
with modeling packages such as COMSOL Multiphysics, SPSS, SAS, R, Stata, and so on.

Modeling Mitigation - What to do? We will use an amalgamation of the two models. First combining our data
of the daily growth of the initial number (initial exponential growth) of total confirmed cases in the US. Second
applying the known range of R0 values for COVID-19 dataset (refects their mitigation work) from Wuhan. There
is a caveat to this data.  The epidemic in Wuhan was mitigated by action of an authoritarian government.  They
closed roads, locked people in rooms, totally shut down events, had people and healthcare workers with access to
an inadequate supply of masks and respirators, built hospitals in two weeks, and had policemen and drones
patrolling the streets arresting those who did not comply. These are steps that cannot be strictly enforced in a
democratic society. The resultant low Mitigation Rmit values achievable in an autocratic government are not
achievable in a democratic society. Also our concern for the economic and business life of our citizens imposes
limits on extremes and duration of mitigation measures. 

The Bottom Line: 
What is a reasonable and tractable methodology that can be used to transition from exponential to mitigation case
models? As noted, there are three approximate phases of growth: exponential growth, linear transition, and
saturation. The initial phase of exponential growth needs to transition, to lower Rmit via a viable epidemiological
model constrained by knowledge of the Range in Values of R0. (R0 is a viable parameter because it has an

epidemiological interpretation.) The bottom line is: What is a good way to transition between growth phases?   

Einstein espoused a principle for the construction of theories: “A scientific theory should be as simple as
possible,but no simpler”. We will apply this principle of parsimony.. We will transition from the large Reffective
value extracted from the initial exponential growth data coupled through a linear region via a decreasing sigmoidal
curve to the region of a smaller overall average mitigation Rmit value. A sigmoidal curve has some nice features

such as a smooth transistions and a zero slope at the ends of the phases. We use the average value of R0 (includes

the results of their mitigation policy) calculated for the Wuhan epidemic.  The model is to be consistent with the
dynamic epidemiological SIR model. We will now work out the details and parameters of the transition. 
  

Sigmoidal Segmented Terminate Transition Function.
Our sigmoidal transition function has two paramaters: The time of  transition from the exponential growth rate to the
linear rate, tel and the time in days to transition from exponential to the saturation phase/mitigation region, t.es. Of

these, the most critical is the time for the end of exponential growth, and enforcement of mitigation policy, tel. We

will use multiples of the transition time for one doubling of infections cases, or 2.5 days to transition from the
exponential phase to the R0 saturation/mitigation phase.



 Limits to Exponential Growth: The Sigmoidal Transition Function
The Transmission Rate, β, for Infectious Diseases generally changes with the spread of an epidemic.
Some different possible ways in which the Transmission Rate can change are:
(1) The bilinear incidence rate βSI where β is the average number of contacts per infected individual per day.
(2) The standard incidence rate βSI/N
(3) The Holling type incidence rate of the form βSI /(1 +α1S).

(4) The saturated incidence rate of the form βSI /(1+ α2I)

(5) The saturated incidence rate of the form βSI /(1 +α1S + a2I)

The bilinear rate is the Law of Mass Action.

 2 Scenarios:  Worst Case - Exponential Reff  vs.  G overnment Intervention/Mitigation to Lower Rmit

 Consider two different scenarios for epidemic growth. A worst case model that matches the initial exponential
growth well, but then gives a large estimate of both infectous growth and the effective reproductive number,
Reffective.  Then we have a best case model where we use the mean R0 value of 2.6 (range of 2.4 to 2.8)

estimated for the Wuhan COVID-19 breakout, which was obtained with strong Government Intervention.
Is there a more general way to model a transition from Wuhan Rinit Exponential Growth to a Final Mitigation Rmit? 

 Below is sigmoidal transition function, β(t, tel , αm, z),   to Model Mitigation to  βmit  at time, tel

Model Government Mitigation as Transitioning Between Two Transmission/Contact Rates, βint & βmit

ses is the approximate period that doubles the total number of Infections ses 2:=

tel,  time to transition from the end of the exponential phase, βexp to a lower βmit, at the start of mitigation

Somewhat equivalently, think of this as transitioning Reffective
 Length of Transition

Variable z gives multiples of 2 days
of transition periods for the

transition to the final mitigation, Rmit
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 In the SIR Model. the parameter of greatest interest is the Transmission rate, β
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βmit is some fraction, (30 to 90%), of  βinitial

 "Phase-adjusted estimation of number of CPVID 2019 cases in Wuhan, China",  Wang

 R_wks: Reproduction Number Data from Phase-Adjusted Rt Study of Wuhan

R_wks READPRN "Phase-adjusted estimation of Rt COVID 1-1-19 to 4-26-20 cases in Wuhan China.txt"( ):=

RR rows R_wks( ):= RR 22= wks 0 RR 1-..:=
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 Below is the Discrete Algorithm  for  Implementing the 
 SIR (SIRM)  Sigmoidal Transition Mitigation  Model

We will refer to this as the SIR Mitigation Model or SIRM
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 Below is the Discrete Algorithm  for  Implementing the 
 SEIR (SEIRM)  Sigmoidal Transition Mitigation  Model

The SEIRM Model is the SEIR Model with β replaced by the Sigmoidal Function:  
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 Methodology to Extract Mitigation Parameters for Hubei
China Applied Mitigation to Contain their COVID -19 Epidemic. Can we Model Mitigation?

SEIRM Model Mdl β βm, te, N, ( ) SEIRM 59 10
6

 444, β, βm, te, 1, 
1

6.8
, N, 





:= Mod β βm, te, ( ) Mdl β βm, te, 49, ( ) 1 
:=

SIRM S0 I0, β, βmit, tel, z, γ, N, ( )
Initial Guess (SEIRM Params): β βm te( ) 0.19 0.063 20( ):=

 Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between the current data points HInf, HRec, HDed and SIRDModel 
Residual β βm, te, ( ) HInf Mod β βm, te, ( )-:= R rows HInf( ):= R 51=

 Condition to Minimize the Residual Least Squares Fit Error Using L-V Minerr Method

Given 0 Residual β βm, te, ( )= b bm te( ) Minerr β βm, te, ( )T:= b bm te( ) 0.703 0.165 17.732( )=

R0δ 10.333=

HIf Mdl b bm, te, 140, ( ) 1 
:= HRc Mdl b bm, te, 140, ( ) 2 

:= HDd HIf 0.03:=
ERR

R
543.934=

HS Mdl b bm, te, 140, ( ) 0 
:= Rp rows HIf( ) 142=:= q 0 Rp 1-..:= HDe submatrix HDd 0, 21, 0, 0, ( ):=

 Good Match of SEIRM Mitigation Model  (Curves)  to Data  (Symbols )
 )
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δ 0.005:=

The number of days it takes infections to double, t.2x t2x 1.423=

The number of days it takes to recover, trec trec 6.8:=
trec 6.8=

R0
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:= R0δ
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δ γ+
:= R0 10.333=Basic Reproductive Ratio

before and after Intervention:

 Extracted Parameters of Hubei/Wuhan COVID-19 Epidemic 
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 Extracting R0 from Log Plots of Hubei Infected
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 Find the Slope to the Log Plot of Infected to Get an Estimate of R0
m 0 15..:= HIm

m
HInf

m
:= Assume Infectious Period is 10 days

LM log HIm( )


:= LN log HInf( )


:= y x( ) s x int+= F x( ) x 1( )T:=

linfit daz LM, F, ( )
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= slope daz LM, ( ) 0.126= slope
R 1-
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 Linear Fit, LY, to Log of the Curve of Initial Infected: LY m( ) 0.126 m 2.587+:=

R0L slope Infectious_Period, ( ) slope Infectious_Period( ) 1+:= R0L 0.126 10, ( ) 2.26=
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Hubei Epidemic:  Estimation of Initial R0 from Slope of  Log(Infected)

Number of Days

LNn

LY m( )

n m, 

daz
m

m:=

 The semi-log plot below of Hubei Infected vs. Time reveals that after 15 days,
 the epidemic was no longer exponential ==>  Containment was successful.

log Inf t( )( ) log I0( ) R 1-( )
t

Infectious_Period
+=



 Spatial Aggregation by State: Estimate Infect Growth Rate
 Downloaded Johns Hopkins Data From:  March 10 to March 22 2020

S 44 50, ( ) 2.079 2.049 2.089 0.923 1.993 1.023 1.313( )=

https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/

Read Data Files: JH_SP READPRN "JHU State-DCUSNo, Index, Confirmed  Sort 0toP1 3-10- to 3-22-Pop A P-A.txt"( )T:=

JH_s submatrix JH_SP 1, 13, 0, 50, ( ):=  Data from March 10 to March 22  Sort by Number of Cases

R rows JH_s( ) 13=:= r 0 R 1-..:= z R 1-:= dayz
r

r:= C cols JH_s( ) 51=:= c 0 C 1-..:=

 Compare All States: Normalize Infection Curves for all States so Each has a Maximum Value of "1"

gx 1 0.3( )T:= F x v, m, ( ) v e
m x

:=

JXy
r c, 

JH_s
r c, 

JH_s
12 c, 

:= v
c

m
c( ) genfit dayz JXy c 

, gx, F, ( )T:= X j k, ( ) submatrix m j, k, 0, 0, ( )T 10:=

mavg mean m( ) 0.292=:= mavg 10 2.917=

 NY- 1     FL-7    USA-50     CA-3    WA-0   CO-6    NJ-2  

 Increase Resolution: Multiply  Slope of Log Number Infected vs Time Rate Values X 10

LY log JH_s( )


:= SLP
c

slope dayz LY c 
, ( ) 10:= S j k, ( ) submatrix SLP j, k, 0, 0, ( )T:=

 State  Growth Rates Estimates -2 Methods: Exponents*10 ==> X,  Slopes*10 ==> S

NY WA NJ CA IL MI LA FK MA TX GE

X 0 10, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 3.966 1.51 3.921 1.912 3.566 4.294 2.921 2.686 1.986 3.127 2.701
=

S 0 10, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 1.706 0.699 1.825 0.888 1.54 2.864 2.076 1.451 0.71 1.399 1.328
=

PE TE CO WI OH NC MY CN VG MI IN

X 11 21, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 2.993 3.92 2.115 3.317 3.478 3.221 2.811 2.622 2.427 4.596 3.784
=

S 11 21, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 1.354 1.486 1.143 1.693 1.744 1.408 1.295 1.791 1.148 2.756 1.138
=

SC NV UT MN AR OR AZ MO KY IO MN

X 22 32, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 2.968 2.687 2.972 2.293 3.477 1.965 3.716 3.977 2.738 2.221 2.591
=

S 11 21, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 1.354 1.486 1.143 1.693 1.744 1.408 1.295 1.791 1.148 2.756 1.138
=

RI OK NH KN NM VT NB HA DL ID MT

X 33 43, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 2.231 2.732 2.222 2.779 2.089 2.76 1.695 3.201 2.503 3.637 2.686
=

S 33 43, ( ) 0 1 2 3 4 5 6 7 8 9 10

0 1.12 1.519 1.097 1.634 1.575 1.465 0.861 1.269 1.901 2.341 1.658
=

ND WY AL SD WV DC US
Note the  Wide Range of Growth Rates

between the States. Physical/Social isolation/distance
makes some State populations less inaccessible.

X 44 50, ( ) 3.281 2.328 3.459 1.062 4.699 2.71 3.211( )=

 All States: Estimate the Growth Rate from Slope of Log of the Infected vs Days Data

 Increase Resolution:  Multiply Infection  Exponential Rate Values X 10

Row 0 JH_SP is # of State



 STATE PLOTS ARE IN THIS ORDER TOP TO BOTTOM
 WA- 1     CA-3     FL-7    USA-51    NY-0      NJ-2    LA -6 
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JXy
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JXy
7 

JXy
51 

JXy
0 

JXy
2 

JXy
6 

dayz

 Estimate the Basic Reproduction Ratio R0  for the Four States and USA: 

 Reproductive Ratio R0L  Rank ( Listed in Order Below):  N Y, FL, USA, CA, WA

slope dayz LY 1 
, ( ) 0.07= R0L 0.164 10, ( ) 2.64=

slope dayz LY 2 
, ( ) 0.183= R0L 0.092 10, ( ) 1.92=

slope dayz LY 3 
, ( ) 0.089= R0L 0.155 10, ( ) 2.55=

slope dayz LY 0 
, ( ) 0.171= R0L 0.074 10, ( ) 1.74=

slope dayz LY 4 
, ( ) 0.154= R0L 0.128 10, ( ) 2.28=

 Assumptions Used for SIR Mathematical Epidemiological Model

Refer to the SIR Model given on page 7.
The Dynamics of an epidemic can be expressed by the rates of change of three Compartments or groups:
Susceptibles or Healthy (S), those that are Infected (I), and those Recovered (R). The dynamics of S, I, R, can be
described by three non-linear deterministic differential equations.

 Some Assumptions of Compartmental SIR Model:
The model's transmission rate probabilities (β, γ) and the Basic Reproductive Ratio R0 are constant during the

outbreak. 
A person who transitions to the infected group immediately becomes infectious. There is no latent period. 
All individual have the same rate of recovery, γ. If the duration of the infection is D days, then the transition rate, γ,
from I to R is the reciprocal of D. The duration (average generation) of the infection for COVID-19 is ~ 10 days. 
The population is homogenous and well mixed (homogenous mixing within the populations I and S). In actuality,
people interact in complex social networks (communities) that have different fundamental structural properties. 
In a Population, N, spread is by the Law of Mass Action, that is, the number of new cases per unit time, or rate, is
proportional to the product of the number of Susceptible and the number of Infections people, =  β * I * S/N
The rate of decrease of the healthy population, dS/dt,  is proportional to the product of the number of  healthy
people and the fraction of the total population that is infected. 
People are no longer infectious after 1/γ days and are afterwards immune. The I and R case records are accurate
and can be used to extract the magnitude of β. 



 New York City Data 
https://www1.nyc.gov/assets/doh/downloads/pdf/imm/covid-19-daily-data-summary.pdf

Cases READPRN "NYC Inf 3-13 to 3-30 2020.txt"( ):= Rc rows Cases( ):= j 0 Rc 1-..:= JNy Cases:=

Rc 18= i 1 Rc 1-..:= New_Cases
i

Cases
i

Cases
i 1--:= JNx

j
j:= NCs New_Cases:=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
NCs

i

Cases
i 1-

:= Cases
Rc 1- 38087= rate rate 1+:=

rateavg mean rate( ) 41.189=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:=  Days to Double: Dbl 2.01=

Dbl_Days JNy
Rc 1- 100, Rc, 0, ( ) 2.1=

gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JNx JNy, gx, F, ( )T:= m 0.178= fx t( ) v e
m t

:=

guess 1 0.01 1( )T:= a k c( ) expfit JNx JNy, guess, ( )T:= a k c( ) 7398.75 0.111 9307.034-( )= Fe x( ) a e
k x

 c+:=

0 2 4 6 8 10 12 14 16 18 20
0

1 10
4

2 10
4

3 10
4

4 10
4

5 10
4

6 10
4

NY- Total Cases/Day

 

T
ot

al
 C

as
es

JNy

fx t( )

JNx t, 

 Exponential Growth ==> NY Epidemic R0m m 10 1- 0.776=:=
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 NY Reproductive Ratio R0L: LM log Cases( )


:= slope JNy LM, ( ) 5.548 10
5-

= R0L 0.137 10, ( ) 2.37=
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 New York State Data 
https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_New_York_(state)

Cases READPRN "NY CV-19 Inf 3-3 to 4-12 2020.txt"( ):= Rc rows Cases( ):= j 0 Rc 1-..:= JNy Cases:=

Rc 41= i 1 Rc 1-..:= New_Cases
i

Cases
i

Cases
i 1--:= JNx

j
j:= NCs New_Cases:=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
NCs

i

Cases
i 1-

:= Cases
Rc 1- 1.867 10

5
= rate rate 1+:=

rateavg mean rate( ) 41.786=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:=  Days to Double: Dbl 1.985=

Dbl_Days JNy
Rc 1- 100, Rc, 0, ( ) 3.773=

gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JNx JNy, gx, F, ( )T:= m 0.098= fx t( ) v e
m t

:=

R0m m 10 1- 0.02-=:=

a k c( ) expfit JNx JNy, guess, ( )T:= a k c( ) 11641.922 0.074 22313.213-( )= Fe x( ) a e
k x

 c+:=

Nsm supsmooth JNx NCs, ( ):= Exponential Growth ==> NY Epidemic
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 NY Reproductive Ratio R0L: LM log Cases( )


:= slope JNy LM, ( ) 1.761 10
5-

= R0L 0.137 10, ( ) 2.37=
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 Methodology to Estimate the Outcome of the NY Epidemic
USA: m = 0.248 

β = 0.1
α = 0.248 + 0.1
α = 0.319, R0 = 4.49

Our methodology is similar to most papers, the major difference is we use Mathcad's
Error Minimization function Minerr, not Python, R, or MATLAB's Minimization Tool. 

 Assume that  80%  of the Population is Either Not Susceptible nor Accessible L 11
1-

:=

S0 19.5 10
6

 0.8:=  S0  is Population ModN β( ) SIRD S0 2, β, L, δ, Rc 2-, ( ):=SIR Model
I t( ) I0 e

β γ-( ) t
=

InfN β( ) ModN β( ) 1 
:= SU β( ) ModN β( ) 0 

:= ISU β( ) stack InfN β( ) SU β( ), ( ):=

 Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between the current data points JNy and SIRD Model 

JNS stack JNy S0 JNy-( ),  := ResidJN β( ) JNS ISU β( )-:= Given 0 ResidJN β( )=

b Minerr β( )T:= b 0.435= R0
b

L
4.79=:=Use Minerr to Extract Optimal Parameters:

<== Today  

 Model            
  Matches        
US Data ===>

Dead 
UIf ModN b( ) 1 

:= URc ModN b( ) 2 
:= UDd UIf 0.03:=

ERR

R
31075.158=

n 0 Rc 1-..:= R0SIR
b

L 0.015+
4.112=:= UDe submatrix UDd 0, 13, 0, 0, ( ):=

 Extracted Parameters of NY COVID-19 Epidemic 

 Starts March 3rd ==>

Guess ex 1.4:= FitPwr ex t, ( ) JNy
0

ex
t

:= Imax = I(0) + S(0) − ν/β log S(0) − ν/β + ν/β log ν/β

ResidJN2 ex( ) JNy FitPwr ex JNx, ( )


-:= Given 0 ResidJN2 ex( )= Ex Minerr ex( ):= Ex 1.344=

 Fit JHy with a Power Function, PWR(t): Pwr t( ) JNy
0

Ex
t

:= D2X Ex( )
ln 2( )

ln Ex( )
:= D2X Ex( ) 2.345=

Dbl_Days 9415 100, 15, 0, ( ) 2.288=

The number of days it takes infections to double, t.2x t2x
1

b
:= t2x 2.296= b 0.435=

R0
b

L δ+
4.541=:=The number of days it takes to recover, trec γ 0.063= trec

1

L
:= trec 11=

Proj SIR S0 2, 0.186, L, 180, ( ):= PIf Proj 1 
:= PRc Proj 2 

:= PS Proj 0 
:= Rp rows PIf( ) 182=:=

m 0 Rp 1-..:= Rp 1- 181=

 No Mitigation Scenario:  Approximate Match to Early NY Total # Cases

Proj SIR S0 2, b, 
1

6.8
, 60, 





:= PIf Proj 1 
:= PRc Proj 2 

:= PS Proj 0 
:= Rp rows PIf( ) 62=:=

m 0 Rp 1-..:= Rp 1- 61= max PIf( ) 3.819 10
6

=
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JNyn

PIfm

fx x( )

PRcm

PSm

JNyn

PIfm

fx x( )

PRcm

JNxn m, x, m, m, JNxn, m, x, m, 

 Imax, Calculate Days to Double, D2X and Fit Power Function to USA JH Data

Removed Infected 



 Mitigation: Model with Sigmoid Transition to a Lower Reff

ProM SIRM S0 2, b, b, 180, 7, 
1

11
, 180, 





:= PIf ProM 1 
:= PRc ProM 2 

:= PS ProM 0 
:=
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JNyn

PIf34m

fx x( )

PRc34m

PS34m

JNyn

PIf34m

fx x( )

PRc34m

D34u 10

JNxn m, x, m, m, JNxn, m, x, m, u, 

Ds ProM 3 
:= Rd rows Ds( ) 182=:= u 1 Rd 1-..:= Total_Deaths Ds:= Total_Deaths 1.391 10

6
=

Rc 41= m 0 Rp 1-..:= Rp 1- 181= Imax max PIf( ):=
Imax 7.124 10

6
=

 No Mitigation: NY Infection Peaks by April 15th - It has infected everybody
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JNyn

PIfm

fx x( )

PRcm

PSm

JNyn

PIfm

fx x( )

PRcm

Dsu

JNxn m, x, m, m, JNxn, m, x, m, u, 

 Model            
  Matches        
US Data ===>

<==  Peaks April 15th 

<== "Today"  3-30-2020

 Mitigation Reff => 0.476 @ 47 Days: NY State Infection Peak with Transition

Rc 41= MR34 SIRM S0 2, b, 0.07, 28, 7, 
1

11
, 80, 





:= PIf34 MR34 1 
:= PRc34 MR34 2 

:= PS34 MR34 0 
:=

D34 MR34 3 
:= Total_Deaths D34:= Total_Deaths 94783.722=

 # Infected at the Exponential Transition Point
Imax max PIf34( ):= Nmax match Imax PIf34, ( ):= Nmax 50( )= Imax 3.42 10

5
=

Rp rows PIf( ) 182=:=



 USA Data Directly Our World in Data
https://ourworldindata.org/coronavirus

Read Data File: JH_USA READPRN "OWD US Date, TC NC TD ND  3-3 to 4-29.txt"( ):=  March 3 to April 25

JHy JH_USA 3 
:= Cases JHy:= Rc rows JHy( ):= JHy

Rc 1- 1.013 10
6

= j 0 Rc 1-..:=

Rc 58= i 1 Rc 1-..:= JHx
j

j:= days
i

i:= rows days( ) 58=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate
New_Cases

i
Cases

i
Cases

i 1--:= NC New_Cases:=

rate
i

100
New_Cases

i

Cases
i 1-

:= Cases
Rc 1- 1.013 10

6
= rate rate 1+:= rateavg mean rate( ) 19.012=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:= Days to Double: Dbl 3.982=

Dbl_Days 26138 100, 17, 0, ( ) 2.117=

a 1:= b 0.01:= c 1:= guess a b c( )T:= gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JHx JHy, gx, F, ( )T:=

m 0.059= R0m m 10 1- 0.409-=:=

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a b c( ) expfit JHx JHy, guess, ( )T:= a b c( ) 1.573 10
5

 0.038 2.342- 10
5

( )= Fe x( ) v e
m x

:=
dy N( )

ln
N

v






m
:=

fit x( ) a e
b x

c+:= v 40282.182= b 0.038= Days to Number, N:
x 0 100..:=

 Exponential Growth ==> US Epidemic Nsm supsmooth JHx NC, ( ):=
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:= slope JHx LM, ( ) 0.07= R0L 0.137 10, ( ) 2.37=
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 Methodology to Estimate the Outcome of the USA Epidemic
Our methodology is similar to most papers, the major difference is we use Mathcad's
Error Minimization function Minerr, not Python, R, or MATLAB's Minimization Tool. 

 Assume that 80% of the Population is Either Not Susceptible nor Accessible

S0 3.2 10
8

 0.8:=  S0  is Population ModU β( ) SIRD S0 100, β, 
1

6.8
, δ, Rc 2-, 





:=SIR Model

InfU β( ) ModU β( ) 1 
:= SU β( ) ModU β( ) 0 

:= ISU β( ) stack InfU β( ) SU β( ), ( ):=

 Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between 
the current data points JHy and SIRDModel 

ResidJH β( ) JHy InfU β( )-:= Given 0 ResidJH β( )=

b Minerr β( )T:= b 0.337= R0
b

L
3.703=:=Use Minerr to Extract Optimal Parameters:

Infected Removed Dead 
UIf ModU b( ) 1 

:= URc ModU b( ) 2 
:= UDd UIf 0.03:=

ERR

R
1.503 10

5
=

n 0 Rc 1-..:= R0SIR
b

L 0.015+
3.179=:= UDe submatrix UDd 0, 13, 0, 0, ( ):=

 Extracted Parameters of USA COVID-19 Epidemic 
 Imax, Calculate Days to Double, D2X and Fit Power Function to USA JH Data

Guess ex 1.4:= FitPwr ex t, ( ) JHy
0

ex
t

:= Imax = I(0) + S(0) − ν/β log S(0) − ν/β + ν/β log ν/β

ResidJH2 ex( ) JHy FitPwr ex JHx, ( )


-:= Given 0 ResidJH2 ex( )= Ex Minerr ex( ):= Ex 1.184=

 Fit JHy with a Power Function, PWR(t): Pwr t( ) JHy
0

Ex
t

:= Dbl_Days 9415 100, 15, 0, ( ) 2.288= D2X Ex( ) 4.111=

The number of days it takes infections to double, t.2x t2x
1

b
:= t2x 2.97= L 0.091=

R0
b

L δ+
3.51=:=The number of days it takes to recover, trec γ 0.063= trec

1

L
:= trec 11=

 USA Mitigation R0 => 0.476 @ 28 Days:  Infection Peak with Transition

Proj SIRM S0 100, 0.5, 0.07, 28, 3, 
1

6.8
, 120, 





:= PIf Proj 1 
:= PRc Proj 2 

:= Ds Proj 3 
:= PS Proj 0 

:= Rp rows PIf( ):=

Imax max PIf( ):= Imax 2.089 10
6

= Nmax match Imax PIf, ( ):= Total_Deaths Ds:= Total_Deaths 3.458 10
5

=
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To Plot Infections and Deaths on the same scale at right,
The number of Infections (Blue) is divided by 1000

Model=>
 Matches 

US Data

<====Peak Deaths, Total 68,000

April 17
Peak Infected, ==>
Total Projected: 
Actual, Not Reported:
7 Million

 Deaths
Ds - 

14 Day
Delay 

Starts March 5th ==>

 TWK Mitigation Scenario: Reasonably Good Match to USA Cases to Date



 CDC:  Data on USA Total Confirmed Deaths

 https://ourworldindata.org/coronavirus Today 57:=

Read Data File: FL_Deaths READPRN "US HD Deaths MLH 3-1 to 4-27.txt"( ):= Rc rows FL_Deaths( ):=

FDN_m FL_Deaths 0 
:= Rc 137= i 1 Rc 1-..:= j 0 Rc 1-..:= JFx

j
j:= Dnow submatrix FL_Deaths 0, 33, 0, 0, ( ):=

FD_m
j

0

j

i

FDN_m
i

=

:= FD_L
j

0

j

i

FL_Deaths
i 1, 

=

:= FD_H
j

0

j

i

FL_Deaths
i 2, 

=

:=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
FDN_m

i

FD_m
i 1-

:= rate rate 1+:= rateavg mean rate( ) 9.406=:=

Dsm supsmooth JFx FDN_m, ( ):= Deaths to Data and Range  Projections
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 Florida Data 
Update New Cases from Bar Chart: https://experience.arcgis.com/experience/96dd742462124fa0b38ddedb9b25e429

Read Data File: NCfs READPRN "FL Cases 3-11 to 5-5.txt"( ):= Rc rows NCfs( ):= Rc 55= NCfs
Rc 1- 589=

i 1 Rc 1-..:= j 0 Rc 1-..:= JFy
j

0

j

i

NCfs
i

=

:= JFxx
j

j:=
JFy

Rc 1- 37760=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
NCfs

i

JFy
i 1-

:= rate rate 1+:=
rateavg mean rate( ) 10.544=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:=  Days to Double: Dbl 6.915=

Dbl_Days JFy
Rc 1- JFy

0
, Rc, 0, ( ) 4.436=

 Exponential Growth ==> FL Epidemic
Days to Number, N:

gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JFxx JFy, gx, F, ( )T:= Fe x( ) v e
m x

:=
dy N( )

ln
N

v






m
:=

v 3908.158= m 0.045= R0m m 10 1- 0.55-=:=
x 0 100..:=

Dsmf supsmooth JFxx NCfs, (:=
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 FL Reproductive Ratio R0L: LM log JFy( )
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:= slope JFxx LM, ( ) 0.05= R0L 0.137 10, ( ) 2.37=
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 Florida Deaths: IHME Projection Mean, High, Low
IHME https://covid19.healthdata.org/united-states-of-america/florida

Read Data File: FL_Deaths READPRN "FL Deaths MLU Total MLU 3-14 to 4-27 to 6-25.txt"( ):= Rc rows FL_Deaths( ):=

FDN_m FL_Deaths 0 
:= Rc 104= i 1 Rc 1-..:= j 0 Rc 1-..:= JFx

j
j:= Dnow submatrix FL_Deaths 0, 33, 0, 0, ( ):=

FD_m
j

0

j

i

FDN_m
i

=

:= FD_L
j

0

j

i

FL_Deaths
i 1, 

=

:= FD_H
j

0

j

i

FL_Deaths
i 2, 

=

:=  April 16: Dnow 666=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
FDN_m

i

FD_m
i 1-

:= rate rate 1+:= rateavg mean rate( ) 8.009=:= Today 45:= JFX
j

j:=

Dsm supsmooth JFX FDN_m, ( ):= Deaths to Data and Range  Projections
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 Lee County Florida Data - Download From Github
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv

Read Data File: JFy READPRN "FL Lee County Total Cases to 5-6.txt"( ):= Rc rows JFy( ):= JFy
Rc 1- 1176=

i 1 Rc 1-..:= j 0 Rc 1-..:= New_Cases
i

JFy
i

JFy
i 1--:= Rc 61=

NC New_Cases:= JFxx
j

j:=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
NC

i

JFy
i 1-

:= rate rate 1+:=
rateavg mean rate( ) 7.575=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:=  Days to Double: Dbl 9.492=

Dbl_Days JFy
Rc 1- JFy

0
, Rc, 0, ( ) 6.631=

 Exponential Growth ==> FL Epidemic
Days to Number, N:

gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JFxx JFy, gx, F, ( )T:= Fe x( ) v e
m x

:=
dy N( )

ln
N

v






m
:=

v 90.642= m 0.045= R0m m 10 1- 0.546-=:=
x 0 100..:=

Dsmf supsmooth JFxx NC, ( ):=
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 FL Reproductive Ratio R0L: LM log JFy( )


:= slope JFxx LM, ( ) 0.051= R0L 0.137 10, ( ) 2.37=

0 5 10 15 20 25 30 35 40 45 50 55 60
100

1 10
3

1 10
4

100

1 10
3

1 10
4

FL: Left Log Exponential Fit & Cases, Right Linear Cases

Number of Days from Initial 100 Cases

T
ot

al
 N

um
be

r 
of

 C
as

es

Fe x( )

JFy

Fe x( )

NCfs

x JFxx, x, JFxx, 



 Lee County, Cape Coral: Risk of Getting Infected
 Chance that any One person we meet in Lee County has COVID-19
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Lee County New Cases per Day
http://systrom.com/topic/coronavirus/

Estimate
People are 
Infectious

for 14 Days

NInfectious
0

13

n

NC
Rc n- 1-

=

382=:=
 R Numbers in FL

Dx is Factor for Confirmed
 vs Detected Infectious

Lee_Pop 771 10
3

:= ProbLeeFL Dx( )
NInfectious Dx

Lee_Pop
:=

Probability Being
Infected in Lee Co. ProbLeeFL %=ProbLeeFL %=

 Chance that any one person we meet in Zip 33991 has COVID-19
https://www.capecoral.net/government/city_government/city_manager/covid-19_info/index.php

 Cape Coral Zip 33991 Number Cases  Calculate Probability of Being Infected in Zip 33991

Pop in Zip in 33991: Pop_Zip 29075:=

Prob33991
14

Pop_Zip
:=

Prob33991 0.048 %=

Assumptions: Infectius for 14 Days, Dx is Range Confirmed vs. Actual Infected 

ProbInf Dx N, ( ) 1 1 ProbLeeFL Dx( )-( )N
-



 100:=
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 New Orleans Cases
https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Louisiana

NO READPRN "New Orleans 3-10 to 4-1-2020.txt"( ):= Cases NO:= JHy Cases:= Rc rows Cases( ):=

Rc 23= rows Cases( ) 23= p 0 Rc 1-..:= i 1 Rc 1-..:= dx
p

p:= rows dx( ) 23=

New_Cases
i

Cases
i

Cases
i 1--:=

Nc New_Cases:= rows New_Cases( ) 61=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
New_Cases

i

Cases
i 1-

:= Cases
Rc 1- 6424= rate rate 1+:=

rateavg mean rate( ) 11.498=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:= Days to Double: Dbl 6.369=

Dbl_Days JHy
Rc 1- JHy

0
, Rc, 0, ( ) 2.227=

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a 1:= k 0.01:= c 1:= guess a k c( )T:= gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit dx JHy, gx, F, ( )T:=

a k c( ) expfit dx JHy, guess, ( )T:= a k c( ) 155.916 0.17 244.651-( )= Fe x( ) v e
m x

:=

dy N( )

ln
N

v






m
:=

fit x( ) a e
k x

c+:= m 0.191= v 96.221= Pop of S Koria: 51.5 Million
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R0m m 10 1- 0.908=:=
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dx

 SK Reproductive Ratio R0L: LM log Cases( )


:= slope dx LM, ( ) 0.129= R0L 0.053 10, ( ) 1.53=
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 UK Data 
https://ourworldindata.org/coronavirus-source-data

Cases READPRN "UK Cases 3-1 to 4-19.txt"( ):= Rc rows Cases( ):= j 0 Rc 1-..:= JGy Cases:=

Rc 50= i 1 Rc 1-..:= New_Cases
i

Cases
i

Cases
i 1--:= JGx

j
j:= NCs New_Cases:=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate

rate
i

100
NCs

i

Cases
i 1-

:= Cases
Rc 1- 1.142 10

5
= rate rate 1+:=

rateavg mean rate( ) 10.673=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:=  Days to Double: Dbl 6.835=

Dbl_Days JNy
Rc 1- 100, Rc, 0, ( ) =
Rc 1-

gx 20 0.2( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JGx JGy, gx, F, ( )T:= fx t( ) v e
m t

:=

m 0.087= R0m m 10 1- 0.13-=:=
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 Exponential Growth ==> NY Epidemic
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 GB Reproductive Ratio R0L: LM log Cases( )


:= slope JGx LM, ( ) 0.075= R0L 0.106 10, ( ) 2.06=
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 SEIRM Methodology: Estimate Outcome of the UK Epidemic
Our methodology is similar to most papers, the major difference is we use Mathcad's
Error Minimization function Minerr, not Python, R, or MATLAB's Minimization Tool. 

S0 66.4 10
6

 0.8:=

SEIRM Model Mdl β βm, te, N, ( ) SEIRM S0 23, β, βm, te, 2, 
1

6.8
, N, 





:= Mod β βm, te, ( ) Mdl β βm, te, 48, ( ) 1 
:=

L
1

6.8
:= Initial Guess (SIRD Params): β βm te( ) 0.19 0.063 20( ):=

 Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between the current data points HInf, HRec, HDed and SIRDModel 

Residual β βm, te, ( ) JGy Mod β βm, te, ( )-:= Rc 50= n 0 Rc 1-..:= rows Mod β βm, te, ( )( ) 50=

 Condition to Minimize the Residual Least Squares Fit Error Using L-V Minerr Method

Given 0 Residual β βm, te, ( )= b bm te( ) Minerr β βm, te, ( )T:= b bm te( ) 0.734 0.273 26.176( )=

ERR

R
1109.846=

R0
b

L
4.989=:= R0

bm

L
1.857=:=

 Extracted Parameters of GB COVID-19 Epidemic 
 Imax, Calculate Days to Double, D2X and Fit Power Function to USA JH Data

ex 1.4:= FitPwr ex t, ( ) JGy
0

ex
t

:=

ResidJG2 ex( ) JGy FitPwr ex JGx, ( )


-:= Given 0 ResidJG2 ex( )= Ex Minerr ex( ):= Ex 1.198=

 Fit JHy with a Power Function, PWR(t): Pwr t( ) JGy
0

Ex
t

:= D2X Ex( )
ln 2( )

ln Ex( )
:= D2X Ex( ) 3.843=

Dbl_Days 9415 100, 15, 0, ( ) 2.288=
100 2

16

2.309
 12188.753=

The number of days it takes infections to double, t.2x t2x
1

b
:= t2x 1.363= b 0.734=

R0
b

L δ+
4.825=:=The number of days it takes to recover, trec γ 0.063= trec

1

L
:= trec 6.8=

Proj Mdl b bm, te, 140, ( ):= PIf Proj 1 
:= PRc Proj 2 

:= PS Proj 0 
:= Ds Proj 3 

:= max Ds( ) 36178.301=

Rp rows PIf( ) 142=:= m 0 Rp 1-..:= Tot_Deaths Ds:= Tot_Deaths 1.681 10
6

= max PIf( ) 4.02 10
6

=
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 Italy COVID19 Cases
 Growth Data and Curve Fit for WHO COVID-19: Total Cases in Italy

Source: CDC Data for Total Number of World Cases Reported to WHO   (Virus is called (SARS-CoV-2)
https://en.wikipedia.org/wiki/Template:2019%E2%80%9320_coronavirus_outbreak_data/WHO_situation_reports

https://www.statista.com/statistics/1101680/coronavirus-cases-development-italy/

Read Data File: WCases READPRN "Italy COVID-19 Feb 21 to April 11 2020 Totals.txt"( ):= JIy WCases:=

Rc rows WCases( ):= Rc 52= i 1 Rc 1-..:= k 0 Rc 1-..:= days
i

i:= rows WCases( ) 52= rows days( ) 58=

WCases
Rc 1- 1.523 10

5
=  Calculate the Rate of Growth of Cases and Find Average WCases

0
3=

NCs
i

WCases
i

WCases
i 1--:= New_Cases NCs:=

rate
i

100
NCs

i

WCases
i 1-

:= WCases
Rc 1- 1.523 10

5
= rate rate 1+:=

rateavg mean rate( ) 14.861=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:= Days to Double: Dbl 5.003=

Fn N0 ex
t

= Daysdouble =Daysdouble Exponential Growth ==> Italy Epidemic

k 0 Rc 1-..:=  Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases
dz

k
k:=

gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit dz WCases, gx, F, ( )T:= fx d( ) v e
m d

:=

a k c( ) expfit dz WCases, guess, ( )T:= a k c( ) 23369.425 0.042 34277.269-( )= fit x( ) a e
k x

c+:=

Note: the large increase day 25 is because of a change in reporting from laboratory confirmed to all confirmed.
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days

R0m m 10 1- 0.344-=:=

Dbl_Days JIy
Rc 1- JIy

0
, Rc, 0, ( ) 3.327=

 Italy Reproductive Ratio R0L: LW log WCases( )


:= slope days LW, ( ) =slope days LW, ( ) R0L 0.04 10, ( ) 1.4=

Using Exp Dble Fn Method:  
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 Spain COVID19 Cases and Deaths
 Growth Data and Curve Fit for WHO COVID-19: Total Cases in Spain

Source: CDC Data for Total Number of World Cases Reported to WHO   (Virus is called (SARS-CoV-2)

Read Data File: https://ourworldindata.org/coronavirus-source-data

WCases READPRN "Spain COVID-19 Feb 26 to April 23 CasesTotNew Deaths TN.txt"( ):= JSy WCases 0 
:=

Rc rows WCases( ):= Rc 58= i 1 Rc 1-..:= k 0 Rc 1-..:= dz
k

k:= rows JSy( ) 58= WC JSy:= daqs
k

k:=

JSy
Rc 1- 2.084 10

5
= rows daqs( ) 58= Calculate the Rate of Growth of Cases and Find Average

New_Cases
i

WC
i

WC
i 1--:=

NCs New_Cases:=

rate
i

100
New_Cases

i

WC
i 1-

:= WC
Rc 1- 2.084 10

5
= rate rate 1+:= rateavg mean rate( ) 13.605=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:= Rate Days to Double: Dbl 5.434=

Using Exp Dble Fn Method:  
Dbl_Days JSy

Rc 1- JSy
0

, Rc, 0, ( ) 3.903=
Fn N0 ex

t
= Daysdouble =Daysdouble

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit dz WC, gx, F, ( )T:= v m( ) 11516.074 0.054( )= fx t( ) v e
m t

:=

a k c( ) expfit dz WC, guess, ( )T:= a k c( ) 63344.264 0.028 84304.213-( )= fit x( ) a e
k x

c+:=

R0m m 10 1- 0.46-=:= Exponential Growth ==> Spain Epidemic
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 Spain Reproductive Ratio R0L: LW log WC( )
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:= slope daqs LW, ( ) 0.072= R0L 0.04 10, ( ) 1.4=



Rc rows Cases( ):=

JH_SK READPRN "JHU S Korea Inf 2-20 to 4-7 - Cols.txt"( ):= JHy JH_SK:=

Cases JHy:= Rj rows Cases( ) 48=:= p 0 Rj 1-..:=

rows Cases( ) 48=

Rc 48= i 1 Rc 1-..:=

New_Cases
i

Cases
i

Cases
i 1--:= JKx

p
p:= days

i
i:=
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Cases

x JKx, x, 

rows days( ) 58=

 Calculate the Rate of Growth of Cases,  Find Average Rate, and Days to Double from Avg. Rate
New_Cases

i
Cases

i
Cases

i 1--:=

rate
i

100
New_Cases

i

Cases
i 1-

:= Cases
Rc 1- 10331= JHy

0
80= rate rate 1+:=

rateavg mean rate( ) 9.803=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Dbl
ln 2( )

ln 1
rateavg

100
+









:= Days to Double: Dbl 7.412=

Dbl_Days JHy
Rc 1- JHy

0
, Rc, 0, ( ) 6.845=

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a 1:= k 0.01:= c 1:= guess a k c( )T:= gx 100 0.3( )T:= F x v, m, ( ) v e
m x

:= v m( ) genfit JKx JHy, gx, F, ( )T:=

a k c( ) expfit JKx JHy, guess, ( )T:= a k c( ) 2.99 10
9

 7.477 10
8-

 2.99- 10
9

( )= Fe x( ) v e
m x

:=

dy N( )

ln
N

v






m
:=

fit x( ) a e
k x

c+:= v 3298.003= Pop of S Koria: 51.5 Million
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R0m m 10 1- 0.72-=:=

<===  Quenched! 

 SK Reproductive Ratio R0L: LM log Cases( )


:= slope JKx LM, ( ) 0.028= R0L 0.053 10, ( ) 1.53=

 S Korea J. Hopkins   Feb 20 - April 7: Quenc he d



 Methodology to Extract Mitigation Parameters for S. Korea
S. Korea Applied Mitigation to Contain their COVID -19 Epidemic. Model their Mitigation. 

SEIRM Model Mdl β βm, N, ( ) SEIRM 52 10
6

 80, β, βm, 3, 3.8, 
1

7
, N, 





:= Mod β βm, ( ) Mdl β βm, 46, ( ) 1 
:=

SγM S0 I0, β, βmit, tel, z, γ, N, ( )Initial Guess (SIRD Params): β βm( ) 0.4 0.3( ):=

 Use Quasi-Newton Method: Minimize Least Squares Error LSQFit JHy Model β γ, ( )-( )
2=

 Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual
Define a Residual to be the difference between the current data points JHy and SIRM Model 

Residual β βm, ( ) JHy Mod β βm, ( )-:= R rows JHy( ):= R 48=

 Condition to Minimize the Residual Least Squares Fit Error Using L-V Minerr Method

Given 0 Residual β βm, ( )= 0.1 β 0.4 0.01 βm 0.3

Use Minerr to Extract Optimal Parameters: b bm( ) Minerr β βm, ( )T:= b bm( ) 1.248 0.163( )=

HS Mdl b bm, 140, ( ) 0 
:=

HIf Mdl b bm, 140, ( ) 1 
:= HRc Mdl b bm, 140, ( ) 2 

:= HD Mdl b bm, 140, ( ) 3 
:=

ERR

R
83.623=

Rp rows HIf( ) 142=:= max HD( ) 177.473=

 Good Match of SEIRM Mitigation Model (Symbols) to Data (Dots)
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 Extracted Parameters of South Korea COVID-19 Epidemic 

The number of days it takes infections to double, t.2x t2x
1

b
:= t2x 0.801= δ 0.005:=

The number of days it takes to recover, trec trec
1

L
:= trec 6.8=

Basic Reproductive Ratio
before and after Intervention:

R0
b

L γ+
:= R0δ

b

L γ+
:= R0 5.94= R0δ 5.94=

Infected



 World COVID19 Cases
 Growth Data and Curve Fit for WHO COVID-19: Total Cases in World

Source: CDC Data for Total Number of World Cases Reported to WHO   (Virus is called (SARS-CoV-2)
https://en.wikipedia.org/wiki/Template:2019%E2%80%9320_coronavirus_outbreak_data/WHO_situation_reports

Read Data File: WCases READPRN "World COVID-19 Feb 1 to April 7 2020 Totals.txt"( ):= JWy WCases:=

Rc rows WCases( ):= Rc 67= i 1 Rc 1-..:= days
i

i:= rows WCases( ) 67= rows days( ) 67=

 Calculate the Rate of Growth of Cases and Find Average and Days to Double from Average Rate

WC WCases:= WC
Rc 1- 1.317 10

6
= New_Cases

i
WCases

i
WCases

i 1--:= NewC New_Cases:=

rate
i

100
New_Cases

i

WCases
i 1-

:= WCases
51

3.381 10
5

= rate rate 1+:= rateavg mean rate( ) 8.83=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Days to Double: Dbl 7.412=
Dbl ln 2( ) ln 1

rateavg

100
+

















1-

:=
Dbl_Days JWy

Rc 1- JWy
0

, Rc, 0, ( ) 9.875=

 Calculate Number of Days to Double (D2X) and Fit Power Function to World Data

FPr ex t, ( ) WC
0

ex
t

:= ResW ex( ) WC FPr ex days, ( )


-:= Given 0 ResW ex( )= Ex Minerr ex( ):= D2X Ex( ) 9.825=

 Exponential Growth ==> World Epidemic R0m Ex 10 1- 9.731=:=

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a k c( ) expfit days WCases, guess, ( )T:= a k c( ) 2420.678 0.096 36065.512( )= fit x( ) a e
k x

c+:=

R0L 0.04 10, ( ) 1.4=
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 World Reproductive Ratio R0L: LW log WCases( )


:= slope days LW, ( ) 0.025=

Note: the large increase day 25 is because of a change in reporting from laboratory confirmed to all confirmed.
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 Deaths: World, Fr, Ge, It,  South Korea,  Sp, Sw, UK, USA
 Compare Deaths per Capita: USA Lower than Europe

Source:    https://ourworldindata.org/coronavirus-source-data

 Order of Data:   World  France  Germany  Italy    South Korea   Spain  Sweden  United Kingdom  USA

Deaths READPRN "Deaths World FR GE IT SK Sp UK US SW Feb 22 to April 19.txt"( ):=

Pop_Millions 7580 66.9 83.7 60.4 52 46.728 10.2 66.48 327( )T:= w 0 8..:=

Rc rows Deaths( ):= Rc 58= i 1 Rc 1-..:= Total_Deaths w 
Deaths w 

:=

Total_Deaths 2.2 10
6

 2.398 10
5

 47386 4.488 10
5

 6542 3.247 10
5

 15129 1.636 10
5

 3.627 10
5

( )=

 Deaths per Million, DpM: DpM w  Deaths w 

Pop_Millions
w



:=

Wd DpM 0 
:= FR DpM 1 

:= GE DpM 2 
:= IT DpM 3 

:= SK DpM 4 
:=

SP DpM 5 
:= SW DpM 6 

:= UK DpM 7 
:= US DpM 8 

:=

 Deaths per Million in Order of Largest to Smallest

 Spain, Italy, France, UK, Sweden, US, Germany, World, S. Korea
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 World COVID19 Deaths
 

WD READPRN "World Deaths OWD Feb 1 to April 30.txt"( ):= Rc rows WD( ):= i 1 Rc 1-..:=

NewD
i

WD
i

WD
i 1--:= WD

Rc 1- 2.271 10
5

= WCases WD:= JWy WCases:= days
i

i:=

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a k c( ) expfit days WD, guess, ( )T:= a k c( ) 2970.068 0.05 10282.265-( )= fit x( ) a e
k x

c+:=

 Calculate the Rate of Growth of Cases and Find Average and Days to Double from Average Rate

WC WCases:= New_Cases
i

WCases
i

WCases
i 1--:= NewC New_Cases:=

rate
i

100
New_Cases

i

WCases
i 1-

:= WCases
51

14603= rate rate 1+:= rateavg mean rate( ) 9.527=:=

 Calculate the Number of Days 
 for Cases to Double - Dbl:

Days to Double: Dbl 8.192=
Dbl ln 2( ) ln 1

rateavg

100
+

















1-

:=
Dbl_Days JWy

Rc 1- JWy
0

, Rc, 0, ( ) 9.206=

 Calculate Number of Days to Double (D2X) and Fit Power Function to World Data

FPr ex t, ( ) WC
0

ex
t

:= ResW ex( ) WC FPr ex days, ( )


-:= Given 0 ResW ex( )= Ex Minerr ex( ):= D2X Ex( ) 8.781=

 Exponential Growth ==> World Epidemic R0m Ex 10 1- 9.821=:=

 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a k c( ) expfit days WCases, guess, ( )T:= a k c( ) 2970.068 0.05 10282.265-( )= fit x( ) a e
k x

c+:=
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 Computational Tools - Computer Algebra Systems

This work started with the goal of understanding and predicting the dynamics of the COVI-19 disease.
Implementing this goal has required use of some foundational concepts and Mathematical Tools.

 Foundational Concepts and Mathematical Tools
♦ Goal: Model Biological Transmission, Immune System, and Compartmental Population Dynamics
♦ Analyzing Dynamics Requires Non Linear Differential Equations, NLDE
♦ Delayed Differential Equations, DDE, are a great model for COVID-19's incubation and latent properties
♦ Recently, the Mathematics of Neural Networks to expands understanding Emergent Properties of Systems
♦ Classical (Newtonian) Analytic Methods work well only for idealized systems, e.g. Planetary Motion
♦ Most curves/dynamics are not analytic and thus not tractable with Analytic Ordinary Differential Equations
♦ Population Dynamics for infectious disease transmission are fundamentally Statistical/Stocastic processes
♦ Analysis of these systems requires a Twentieth-Century Math Approach, TCMA
♦ Twentieth-Century Approach employs Numeric Computer Solution Methods, such as Euler's Method
♦ Software is the foundational component in Computer Methods
♦ I started this work with the Engineering Computational Algebra Software, Mathcad, as the Modeling Tool
♦ Mathcad could not implement Delayed Differential Equations or some of the Stochastic Methods
♦ Had to investigate other tools: Mathematica, MatLab, R, Python, Maple
♦ Mathematica is Symbolic and has great horsepower, but it is a little too tempermental for my taste
♦ MatLab is more of  an Engineering Matrix Approach and could require expensive additional Math Packages
♦ R has the statistical packages, but its front end and graphing are limited.
♦ Python is a programming/text language, not primarily Symbolic or Mathematical. Attention to details is tedious.
♦ Maple, while not ideal for my purposes, has the required horsepower, such as DDE Solving Capability. 
♦ Maple's Computation Engine uses more of a Mathematical, Symbolic Programming approach than Mathcad.

 Retooling at Mid-Course
This work was started with, and is documented with Mathcad. 
However, some of the later computational work, such as DDEs were done with Maple
2020. After solving DDE models in Maple, the form of the Mathematical Model and
results of the calculations were then transferred to Mathcad for plot presentation and
documentation.

 Limitations of Least Squares Parameter Extraction Method
Does not assume any error distribution
Assmes that parameter extraction does not depend on the order of infections
Assumes positive and negative deviations are equivalent
Number of new cases at different times is probably not independent
Cannot give any statistical information
It is better to use a Statistical Maximum Log-Likelihood Method

 Calculate R0 
Number of secondary infectives per primary infective per generation 1/γ. 

 Notes
Discrete epidemic models with arbitrary stage distributions and applications to disease
control.    

GDM: SEQIHR Model - Q: Quarateened, Not Inf, H=Isolated

R0
βN

γ
=
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