COVID-19 SIR, SQEAIR, DDE Sigmoidal Models

Created with Mathcad 14 Math Sofiware: Documentation, Model Creation, and Math Calculations
Mathcad Program File (COVID-19 SIR Sigmoid Model. xmcd) and Data can be found at: VXPhysics.com/COVID-19

This work was sparked by the desire to understand the basic dynamics of the Novel
COVID-19 Pandemic. With the exception of the Sigmoidal Incidence Model that was created,
this work is mostly a review of existing research. This is not a formal paper and attribution to

sources are sketchy. Epidemiological models are commonly stochastic, diffusive-spatial,
network based, with heterogeneous sub-populations. However, the parameters of Dynamic
Equation Models, such as SIR and SQEAIR, are more directly related to and interpretable as
physical processes. The intent of this work was to build a simple epidemiological "toy model"
to estimate the period before the peak infection and the total number of infected cases. The
methodology employed was, first, application of Dynamic Deterministic Discrete SIR, SEIR,
& DDE Models to characterize infection data from Wuhan China, USA, UK, Italy, Spain, N.
Korea, NY, FL, New Orleans. Next, a Sigmoidal Incidence Function was used to give an
Empirical Transmission/Contact Model that can successfully fit the observational data from
China. The Levenberg-Marquardt Method was used to extract the Empirical Epidemiological
Parameters of the Epidemic Isolation Policies that were successfully employed by China and S.
Korea. The insights gained from analysis of these successful interventions were then used to
Analyze and Predict Results for the Mitigation Policies of the US, NY, & UK.
NOTE: Current State of Modeling is such that projections are "good" for only about 2 weeks.
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Particulars of the Methodology for the COVID-19 Investigation

This work starts with a general description of the SARS-CoV-2 Virus and the associated COVID-19
disease. Its Epidemiology (Transmission and Model Parameters), Infection Cycle, Risks, and Estimate of
Required Hospital Services are investigated.

Next the SIRD and SEIRD Mathematical Models and their parameters, and general epidemiological
behavior are discussed. Also, the basic assumptions of the SIRD/SEIR models are examined. The model is
demonstrated by its application to a typical flu season. The detailed characteristics of a typical flu season and
the range of its parameters are discussed. We will use whichever model (SEIR or SIR) works best.

COVID-19 outbreaks in Wuhan China, NY, USA, FL, New Orleans, UK, Italy, Spain, N. Korea, and the
World are presented. This was done in the following fashion. First, data on the total infections for each region
were obtained. The rate of change, days to double, and a fit to the data with two types of exponential

curves was made. The data was plotted with two types of exponential curve fits and with the number of new
cases of infection. The infection data on a semi-log plot to observe its exponential behavior were also plotted.
A fundamental and key concept in epidemiology and demograpy is the Basic Reproduction Number, Ry). It is

a threshold, and it is defined such that if RO > 1, the infectious disease will result in an outbreak, i.e. unstable
exponential growth. Ry <1would imply its disappearance. R is the ratio new secondary/primary infections.

A Sigmoidal Transition Model was created to model Mitigation by Governmental Intervention.
An attempt was made to do a spatial analysis by looking at the model behavior in all 50 states. Estimates of
the Reproduction Number, Ry, for each of the states were made. However, keeping up with, aggregating,

updating, processing, and doing a spatial analysis in a timely manner was beyond the time and scope of this
basic investigation.

A deeper investigation on the outbreaks in Wuhan, NY, USA, and the UK was made. For these locations,
the parameters for the SIRD infection model were abstracted. Using the SIRD model and abstracted
parameters, observations on how well the model compares with the infection data, and the projected
behavior/growth of the epidemic was made. The model gave Projected Numbers of the Susceptibles,
Infections, Recovered, and Fatalities.

The inital projected numbers for infections and deaths were horrendous. Projections gave 2 million
deaths in the US. These initial models agreed with the assessment of other earlier epidemiological models.
Clearly, governmental intervention was needed to reduce these epidemic numbers.

Based on interventions in Wuhan China, a Sigmoidal Model was created for this investigation to reflect the
effects of the Wuhan intervention. This intervention model was then applied to our SIRD epidemiological
model. A preview of the model results/plot is shown at the bottom of the following page. It is formulated to
model the reduction in the transmission rate, 3, resulting from the intervention.

COVID-19 Situation (April 8, 2020) of the World at Large
Epidemiological Mathematical Models are important. They are based on our knowledge of the dynamics of
epidemics. Often, there are phenomena that can only be comprehended with math models. Generalization
models have been used to estimate the demand for hospital beds, ICU days, number of ventilatores and also,
importantly, the need and required extent of governmental intervention. To date, the number of infections and
deaths are far below the projections of earlier models. A Model is only as good as the assumptions put into
the Model. Clearly, there are phenomena of the COVID-19 epidemic that are as yet not understood.
Models are constantly being updated and improved.

The story of the COVID-19 outbreak is ongoing. Our knowledge of this novel virus, is in a state of flux.
Every week seems to bring additional important medical and epidemiological information.



Preview: Mitigation Models for China, S. Korea, USA

Shows Daily Match Between Infection Data (Blue A) vs Sigmoidal Model (Blue Line)
See Pages 18, 36, and 27 for the Methodology to Extract Mitigation Model Parameters

Model vs Data - China: Infected (Blue), Recovered (Green), Dead(Black)

Model vs Data - S. Korea: Infected (Blue). Rec. (Green). Dead (Blk)
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What is the predicted infection rate after the April 17th peak? We see that in30 days, a month later, May 19th,
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General Description of Virus and Conclusions
Some Characteristics of the COVID-19 Disease

The SARS-CoV-2 Virus is an enveloped, single-standed RNA virus. It is commonly referred to by the name of
the disease it causes, which is COVID-19. The later name was choosen by the WHO for PR purposes. This
virus was first discovered in China by observing that hospital patients were showing a very virulent type of
pneumonia. (Historically, the most general cause of pneumonia the Streptococcus pneumoniae bacerium.)
Currently, according to the CDC, the incubation period for the novel coronavirus is somewhere between 2 to
10 days after exposure, mean. More than 97 percent of people who contract SARS-CoV-2 show

symptoms within 11.5 days of exposure. The average incubation period seems to be around 5.2 days.
For many people, COVID-19 symptoms start as mild symptoms and gradually get worse over a few days.
Transmission occurs primarily: via respiratory droplets from coughs and sneezes within a range of about 6
feet (1.8 m). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary
research indicates that the virus may remain viable on plastic and steel for up to three days, but does not
survive on cardboard for more than one day or on copper for more than four hours. Models show that 1/3
each of transmission occurs in household, schools-workplaces, and in the community.

Additional Data on Model Parameters:
The paper: "The effect of travel restrictions on the spread of the 2019 novel coronavirus outbreadk", by Ira M.
Longini and Alessandro Vespignani give the following data for the World Pandemic. A generation time (T, )

ranging from 6 to 11 days based on plausible ranges from the SARS epidemic and recent analysis of COVID-19
data. The results for generation time T, = 7.5 days. The obtained posterior distribution provides an average

reproductive number Ry = 2.57, and a doubling time measured at T, = 4.2 days.

They reported that that the median ascertainment rate of detecting an infected individual in Mainland China is equal
t0 24.4%. In other words, the modeling results suggest that in Mainland China only one out of four cases are
detected and confirmed. Studies in Germany suggest only 6% of cases are reported. A recent study in the US,
suggests that as few as 2% of infections are confirmed. Reported Cases, at best, are only 10% of Actual Number.

Let Q equal the % of the Population that, if Infected, could be Reportable Cases. Q:=10%

Allowing for a 7 day incubation period, Baysian Spectral Fusion Analysis of 5 countries shows wavelengths of
2.7,4.1,and 6.7 days. After lockdown the 2.7 and 4.1 day cycles are surpressed, suggesting that they are related
to virus dynamics. See: Rapidly evaluating lockdown strategies using spectral analysis, Nason.

Inreality, model parameters, such as Ry, have different types of statistical distributions. The generation interval

distribution for an infectious disease is the probability distribution function for the time from infection of an individual
to the infection of a secondary case by that individual. Generation interval distributions uniquely characterize the
relationship between the reproductive number R and the growth rate r. Different infectious diseases have at least 5
different possible distributions. See: How generation intervals shape the relationship between growth rates

and reproductive numbers, Wallinga.

The Susceptible, Infected, Recovered (SIR) Model

COVID-19 has a latent or incubation period, during which the individual is said to be infected but not infectious.
Members of this population in this latent stage are labelled as Exposed (but not infectious). The model with this
Exposed group is the Susceptible, Exposed, Infected, Recovered, SEIR Model. However, for this study, given the
decision to use a deterministic discrete differential equation model and the limited amount of data, the model that
most successfully matched the published Confirmed Infectious Case Data is the SIR model.

We will use an SIR Model for Wuhan and the USA. This is shown two pages after this. For the Wuhan
Virus, we found that the Basic Reproductive Ratio, Ry, was 2.74 and that the time to recover is 41 days, days to

double of 3.62=—>Exponential Transmission. During the initial exponential phase of growth, the USA data
gave the number of days for infections to double as 2.309 and the Basic Reproductive Ratio as 2.74.



Epidemic Spread: Factors, Herd Immunity, Prognosis
Infectious Disease Dynamics, Derek Cummings

* The number of individuals infected by each infectious case. (RO)
* The time it takes between when a case is infected and when that case infects other people.

Difference in the Serial Interval
The average length of time between when a case is infected and when s/he infects others,
This serial interval is different for these two pathogens
—Influenza ~2.5 days A Third Factor, 0
—Measles ~ 18 days * Defined as the proportion of transmission occurring prior to symptoms
* Measure of how much shorter latent period is than incubation period
* Proposed by Fraser and colleagues

Reproduction Ratio, RQ: Example - Sexually Transmitted Infection

R,=axcxf

B is the proportion of contacts that become infected
c is the number of contacts per day
B is the duration of infectiousness

Estimates of R0 of several pathogens Death Rate, Extent
Measles — 12 Scarlet Fever—6  Smallpox — 6 Flu: 0.1%, 8%/year
Pertussis — 15 Mumps — 10 Influenza — 2 COVID-19: 0.5%, 70%
Chicken Pox —9 Rubella — 8 HIV -5

Diphtheria — 4 Polio — 6 Dengue — 4 2 5000

Schistosoma japonicum — 3 4000
3000
+ 2000
1000
0

Infectiousness
Viral load (data)

Could also use a proxy for infectiousness, viral load ==>
in infectiousness, viral load in oropharyngeal secretions,
for example

o 2 4 & 8 10
Days post infection

Targeted interventions to stop transmission depend upon being able to identify cases
» [solation, quarantine, screening travelers,prophylactic use drugs all depend on identifying people before transmit

* Delays dramatically reduce effectiveness

—if your interventions don’t identify people until after they’ve done the bulk of their transmission, they don’t work
* The serial interval identifies the time-scale of response
* How quickly can we identify cases?

The Critical Inmunization or Infection Rate to Eradicate a Disease (Herd Immunity %)

H o,
COVID-19 Herd Immunity % Herd Immunity %
Measles and whooping cough, 90-95%
1 : 0
HI(Ry) := 100 1 - — ~ chicken pox and mumps 85-90% coverage
(Ro) ( Roj HI(2.8) = 64.286 polio and scarlet fever 82-97% coverage

smallpox 70-80% coverage
US Herd Immunity: This projects to 200 million infected in USA.

PROGNOSIS:

When social isolation ends, the epidemic will start up again. Based on our current knowledge of the virus,
without social isolation or a vaccine, the number of potential infections in USA is still 200 million.

It is still very infectious. It will probably be two years before the epidemic is under control in the US.




COVID-19 Epidemiology State of Flux (Time Dependent)

Perspective on Number of COVID-19 Deaths in USA

Categories of Annual Deaths in the US
2,813,503 registered deaths (8,000/year) in the United States in 2017

Heart Disease: 647,000/ 23.5% Alzheimer's disease: 121,404/ 4.3%
Cancer: 99,108/ 21.3% Diabetes: 83,564/ 3%

Unintentional injuries: 169,936/ 6% COVID-19: 82.000/ 3%

Chronic lower respiratory disease: 160,201/ 5.7% Influenza and pneumonia: 55,672/2%
Stroke and cerebrovascular diseases: 146,383/ 5.2% Suicide: 47,173

April 7, 2020: THME Revised Estimate of Number of COVID-19 US Deaths:
82,000 deaths from the first wave of infection, although the number could range from 49,000 to 136,000.

Model Limitations: Old February 2020 AHA COVID-19 BEST GUESS
2020 Webinar of the American Hospital Association (AHA)

* Ry =2.5; Doubling time 7-10 days Community epidemic wave 2 months

* Community attack rate = 30-40% US: 96 million cases (27% Population)
* Cases requiring hospitalization = 5% US: 4.8 million admissions

* Cases requiring ICU care = 1-2% US: 1.9 million ICU

* Cases requiring ventilatory support= 1% US:1 PPV

* CFR=0.5% US: 480,000 deaths

Study: Nowcasting and Forecasting the International Spread of COVID-19
Nowcasting and forecasting the potential domestic and international spread of the
2019-CoV outbreak originating in Wuhan, China: a modeling study, Wu, Leung, January 31,2020

Nowcasting Findings:

In our baseline scenario, we estimated that the basic reproductive number for 2019-nCoV was 2.68
Confidence Level (95% CL2-47-2.86) and that 75,815 individuals (95% CL 37 304-130 330) have been
infected in Wuhan as of Jan 25, 2020. The epidemic doubling time was 6.4 days (95% CL 5-8-7-1). We
estimated that in the baseline scenario, Chongging, Beijing, Shanghai, and Shenzhen had imported 461
(95% CL 227-805), 113 (57-193), 98 (49-168), 111 (56-191), and 80 (40-139) infections from Wuhan,
respectively. If the transmissibility of 2019-nCoV were similar everywhere domestically and over time, we
inferred that epidemics are already growing exponentially in multiple major cities of China with a lag
time behind the Wuhan outbreak of about 1-2 weeks.

Nowcasting and forecasting the potential domestic and international spread of the

2019-nCoV outbreak originating in Wuhan, China: a modeling study, Wu, Leung, January 31, 2020

Transmission occurs primarily via respiratory droplets from coughs and sneezes within a range of about 6
feet (1.8 m). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary
research indicates that the virus may remain viable on plastic and steel for up to three days, but does not
survive on cardboard for more than one day or on copper for more than four hours

The incubation period of COVID-19 can last for 2 weeks or longer.
Incubation rate o, is the rate of latent individuals becoming infectious.
Given the known average duration of incubationY, 6 =1/Y.

The average incubation duration us 5.2 days.



IHME COVID-19 health service utilization forecasting team

Forecasting COVID-19 Impact on Hospital bed-days, ICU-days,
Ventilator-days and deaths by US state in the next 4 months

Estimate for Required Hospital Needs Generated April 2, 2020

Goal:
Develop a statistical model forecasting deaths and hospital utilization against capacity by state for the US over the
next4 months.

Statistical model for the cumulative death rate.
We developed a curve-fitting tool to fit a nonlinear mixed effects model to the available admin cumulative death
data. The cumulative death rate for each location is assumed to follow a parametrized Gaussian error function:
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Where the function Y is the Gaussian error function (written explicitly above),

p controls the maximum death rate at each location,

tis the time since death rate exceeded 1e-15,

3 (beta) is location-specific inflection point (time at which rate of increase of the death rate is maximum), and
o (alpha) is a location-specific growth parameter.

Other sigmoidal functional forms (alternatives to Y) were considered butdid notfit the data as well. Data were fit
to the log of the death rate in the available data, using an optimization framework described in the appendix.

The date of peak excess demand by state varies from the second week of April through May. We estimate that
there will be a total of 81,114 (95% U1 38,242 to 162,106) deaths from COVID-19 over the next 4 months in
the US. Deaths from COVID-19 are estimated to drop below 10 deaths per day between May 31 and June 6.
Given current estimates of the basic reproductive rate (the number of cases caused by each case in a susceptible
population), 25% to 70% of the population will eventually become infected. Based on reported case-fatality
rates, these projections imply that there would be millions of deaths in the United States due to COVID-19.

A covariate of days with expected exponential growth in the cumulative death rate was created using information
on the number of days after the death rate exceeded 0.31 per million to the day when 4 different social
distancing measures were mandated

Projection: Excess demand for services above capacity available currently
COVID-19 Death Curves - Hospital and ICU Bed Projection
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SIR Compartmental Disease Transmission Model: Susceptible, Infected, Removed

Data-Based Analysis, Modeling and Forecasting of the COVID-19 outbreak
https://www.medrxiv.org/content/10.1101/2020.02.11.20022186v4.full.pdf - March 5, 2020
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Phenomena involving rates of change often can only be comprehended through Mathematical Models.
The oldest and most common Epidemiological Model is the SIRD model, consisting of a set of four coupled
nonlinear differential equations, which assigns every person in a population to be in one of 4 conditions or
categories. The advantage of SIR model over more detailed models, is that SIR uses only known surveillance data.

S = Susceptible to becoming infected. S, Initial population (initial # of people who are susceptible),

I = Infected through contact with someone already infected. I, Initial number of infected people

R =Removed or Removal Group, either in isolation or dead, or no longer sick or infected.
D = Fatalities

Through time a person may move from being Susceptible to Infected to Removed, so that the number of people
in each category changes, but the total of S +1+ R remains some constant, N.

This is a Compartmental Model, with S,I, R, and D being compartments of subpopulations. Every person starts off
ina given compartment and may then, in time, move to another. Graphically the compartment model looks like the
plots starting on page 11, with the rates of movement between the compartments designated by the parameters: a,
B,andy.

This model assumes that once someone recovers they are immune and can’t be infected again. The model also
assumes that a disease is passed from person to person. The SIRD model can’t be used for diseases that spread by
other modalities, such as eating exotic animals or being bitten by insects.

REMEMBER: A Model is only as good as the assumptions put into the Model.

Potential Error Sources: There are two major of potential sources of error: Process Error and
Observation Error. The source of Process Error is the disease dynamics. It is inherently stocastic.

The observation error is the error in the observation process. A number investigations to
measure the true rate of COVID-19 infections have been done. Actual cases may be 10 to 50
times larger than reported. The major source of error is observational.

Epidemiological Parameters (Different Author May Use Different Symbols)
Infection rate, B: Transmission rate, rate (number per day) that susceptible people become infected
Recoveryrate,  <y: Recovery rate (number per day) that infected people recover. Portion - Removal Rate

CDC - Flu in USA: 36 million flu illnesses, 370,000 hospitalizations & 22,000 deaths.

NOTE: Since the population size, N, is constant,
N=S+I+R these constraints can be used to
N=S+E+I+R eliminate the equation for R in the Models.



Deterministic Mathematical Modeling of Disease

Bio-mathematical deterministic treatment of the SIR or SEIR model

This SIR system of ordinary differential equations is non-linear, and does not admit a
generic analytic solution. Nevertheless, significant results can be derived analytically.

QS = —_lﬁls

dt N

g] — ﬁ — Al
dt N

QR = ‘*II

dt

Initially, when S ~ N

I(t) = Ioe( B_’Y)t

Transition Rates of SIR Movement between adjacent Compartments
* The terms dS/dt, dl/dt , dR/dt in the Nonlinear Differential Equations indicate
the rates of change of the susceptible population size, the infected population size
and the Removed population size, respectively. It is a mechanistic model.
* The term B is the transmission rate and p ~ 2.8 *1/10 days =0.199
* The rates are nonlinear, determined by the law of mass action, rate ~ IS
* 1/y is the period when infected people are contagious.
* High value of  means the epidemic will spread quickly.
*y recovery rate (inverse of the number of days until recovery (1/8)
* The median number of days until recovery is about 6.8 days: y=1/6.8
* High value of y means a person will remain infected for more days
* SIR model basic reproduction number, Ry, = B/y when everyone is susceptible.

* Rate at which compartments move from one to another depends on the fraction
of population in each compartment and transmission rate, § and recovery rate, y.
The SIR model does not allow for those who are exposed, but not infected or

infected but asymptomatic, or time period when latent and also infectious.

Continuous SIRD Model: System of Differential Equations, DE

Given A(}V\:z 0.005

d_s(t) - —B-1(t)-S(1)
dt N

d
dt

_ B8
) =

d
dt

R(t) = ~-I(t)

bty =810t
dt

— (v + 9)-I(1)

Initial Conditions: Terminal Point, T:
S(0) =5, T;=40
10) =1y Mathcad Odesolve Solver: Solution for a
Svstem of Ordinary Differential Equations
R(0) =R
D(0) =0

DE_SIR(S.1y,R¢. Dy, 8,7, N, T) := Odesolve

g ® = »n

SEIR Model (E is Exposed) Infection Cycle Qutcomes

MedCram: COVID Pandemic Update 49: New Data COVID-19 vs Other Viral Infections (Ventilator Outcomes)

SEIR has two (EI) infected Classes.
30% of all transmissions occur from
symptomatic or minimally

symptomatic carriers.

Note:

Incubation 809
| e M Y

Innate
e Immmumnity

Infection—>

A SEIR model does not give a good
fit for Confirmed Infection
Case data, which manifests only

when the carrier is symptomatic. day 0
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Continuous SEIR Model

This is an SEIR Model for China Data from Mathematica: "SEIR model of the coronavirus infection in China"
Mathematica Notebook: SEIR model C 27 march 2020.nb
https://community.wolfram.com/groups/-/m/t/1888335

InfM := READPRN("China Cases -SEIR MMica-13332.txt") RecM := READPRN("China Recovered -SEIR MMica.txt" )
Rc := rows(InfM) Rc =68 m:=1..Rc—-1 IR _:= InfM_ - RecM
AW m m m

Ifnc = InfM_ — InfM
m m m—1

SEIR(SO,IO,EO,B,E,'Y,N) Ti=1.1 Terminal Point, T:
Nl:N:= 100 n:=0.140

Continuous SEIR Model: System of Differential Equations, DE
Given Initial Conditions:
d g = L1050 5(0) = 80900
dt N obreak - Mathematica/Maple SEIR DDE
d gy = 81050 gy E(0) =1 {s'[t] = -Bxs[t]xi[t]/p,
dt N e'[t] =pas[t] +i[t] /p-o+e[t-1.1],
d_I(t) =e-E(t) — (y + 8)-1(t) 1(0) =1 i'[t] =o#xe[t-1.1] -y +i[t-8.7],
dt r'[t] =ysi[t-8.7]};
R@t) =~-10) R(0) =0
dt

Mathcad Odesolve Solver: Solution for a System of Ordinary Differential Equations

S
E
DE_SEIR(SO,EO,IO,RO,B,En{,N,T) := Odesolve : 2T
R
_ T
(S, E I R):=DE SEIR(80899,1,1,0,4,0.1,0.0478,80900, 100) e 0. 140
China Infections Inf(t+8) Mathe?[r!iat_lca Solution Plot -See Next Page
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Good Match Between Data and DDE SEIR Model




Difference Compartmental Models: SEIR Delayed (Maple) v.s. Mathcad SEIR No Delay

This Delayed SEIR Model was developed in Mathematica and Executed in Maple:
"SEIR model C 27 China march 2020.nb" From Mathematica
NOTE: The Mathematica and Maple Delayed SEIR Plots are Identical.

ddesvs = {Dx([]]l =0, Ex{0) = 1, F(0) = 1, R(0) = 0, Sx(0) = 80900, % Dx{#) = 8 Ix(). % Ex{f) |

B"SI —GEx{r— T ) — Ix(¢ GEx{:— 1 ) - fo(r— T ) % R(7) =]fIx(.f

d B Sx(#) Ix(7)
= 'L'?)= = Sx(r) = T
=} dsn := dsolveleval (ddesys, {beta = 4, gamma = 0.0478, sigma = 0.10,
delta = 0.0005, N=B0900, tau 1 =1.1,tau 2 = 8.7,tau 3 = 0}),
numeric) |

} plots[odeplot] (dsn, [[t, Sx(t), color = green], [t, Ex(t), color =

black]], [t, Ix(t), color = blue],[t, R(t), color = red], 0 .. 100,
legend = [ sx(t}, Ex(t), Ix(t), Bx(t)]l, labels = [t,""] ) ;
800001
700004
] Mathematica/Maple SEIR Model Equations
EDDUU_ with 2 Delay Times
SDDDD_ obreak =
- {s"[t] =-Bxas[t] *xi[t] /p,
40000: e'[t] = fas[t]+i[t]/p-ose[t-1.1],
300004 i'[t] =oxe[t-1.1] -y+xi[t-8B.7],
”DDDD- r'[t] = y+i[t-8.71};
100001
[:] i T ~ 2 T X =T i T — . ]
0 20 40 60 80 100

Mathcad SEIR China Infections, No Delay
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Discrete SIRD and SEIR Models - Infectious Disease Qutbreak Equations

The number of people at any day, n, who are: Ry=PBn
# Susceptible-S Number (#) Infected - 1 # Removed-R  #Dead -D
- B - 8 - =
5= S WSl =ty St — Bl — vl Re=R +h D=ol

Algorithms to Calculate the Values of S, I. R.D and S. E. I. R from Model Parameters
Governmental Mitigation is not Modeled
Qutputs S, E. I R, but Shown without the R term below

SIRD(S0.1y.8.7.8,N) := |, « S0 AN) = |8, < S0
DO <« RO «~ 0 Eo - EO
(Mo,o Mo,1 Mo M0,3)<_(SO Ip 0 0) § < 0.005
for ne 0..N R0<—O
S
n+1 n g n ; 0N
or ne .
Sn S
I <1 +—03L -1L(y+8
n+1 n g B n n(A{ ) Sn+1 <~ Sn—s—g-|6|'1n
R <R +1-~ S
n
Dn+1 <_1n.5 E <E -€E + §-|B|-In
Mn+1,0<_sn+1 In+1 <_In+€.En_(|ﬁ{| * 6)'In
Mo i M0 San
M2 R Mo €<
M3 Doy M2 B
M M

Let's look at the example of a typical flu season virus outbreak, a, B. v, R,

1 B
Typical Flu Outbreak Parameters: B:=02 ~:=0.10 ; =100 2= 0005 Rq:= N+ D Ro = 1905

Atypical flu season lasts about 35 weeks (245 days). Week 1 gererally is the first week of October andlasts
until week 35 or the end of May. See plots of a typical flu season on the following page.

The basic reproductive ratio, Ry, is defined by epidemiologists as "R" represents the average number of

secondary cases that result from the introduction of a single infectious case in a totally susceptible population
during the infectiousness period". The product of the infection rate and mean infection duration.
As such R, cantell us about the initial increase of number of the those infected/carrier over a generation.

Atypical flu season lasts about 35 weeks (245 days). Week 1 gererally is the first week of October andlasts
until week 35 or the end of May. See plots of a typical flu season on the following page.

The basic reproductive ratio, Ry, is defined by epidemiologists as "R" represents the average number of

secondary cases that result from the introduction of a single infectious case in a totally susceptible population
during the infectiousness period". The product of the infection rate and mean infection duration.
As such Ry cantell us about the initial increase of number of the those infected/carrier over a generation.



Compare Solutions: SID Parameters for Typical Flu Virus

The Flu Season parameters are 3 =0.2 and y = 1.4. Sg;,,,; is about 0.52 and Infected peaks at 0.024.
If Sy < /A then Infections decrease monotonically to zero - this designates the season as nonepidemic.

Below is a model for a typical flu virus. Because of mutation, new strains of influenza make most
people susceptible (Sn, o=29%) at the beginning of an outbreak. Interestingly, it shows that the
number of infected people (blue curves) has reached a peak after about 54 days (7 1/2 weeks) and
then falls to after 100-120 days (3 - 4 months).

This demonstrates that the SIR model is a good representation for a flu season.

Compare Solution Methods

Continuous Solution: (S, LR, D)= DE_SIR(999,1,0,O,B,PY,1000,120)T t:=0,0.01..120

NOTE: The Continuous Model gives the total number of dead. So D does not hide | in plots, Discrete gives New Deaths.

Discrete Solution: FluSIRD := SIRD(999,1,3,~,8,130) n:=0.130
Susceptible Infected Removed Dead
(0 (1 (2 (3
Sq == FluSIRD 14 := FIuSIRD R4 := FluSIRD Ded := FIuSIRD
mpar ntin . Discrete Solution:
Comp: eCoo uous vs. Discre e.Sou ons APC = (170) 1 ) 100 NG o 10
Percent Difference at the Infection Peak: 70) 1(70)

Given the uncertainty in Epidemic Data, a 2.1% difference is acceptalble

Note that there two different sized scales, the scale shown at the left is larger than the one at the right.

The S, I, R solutions are shown with the scale on the left, Scale Max = 1000
The black curve for the number of deaths uses the scale on the right only. Scale Max =10

Flu: Susceptible (Red), Infected (Blue), Recovered (Green), Dead (Black)

1000
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Ia 400

R, 300
200

100]

— 0
0 10 20 30 40 50 60 70 80 90 100 110 120
t,t,t,n
Number of Days
From Flu: Notice the number of infections drops off with the flu season.



The number of those that are susceptible drops below new infections

SIR Model Normalized: Flu Season 2002-2007 and 2010-2013

Parameters and graphs are from the paper: "Forecasting seasonal influenza with a state-space SIR model", 2017

= DE_SIR(0.9,0.0002,0,0,0.2,0.14,0.9,240)

w3~ 3n

t:=0,0.1..240

Plots From: "Forecasting seasonal influenza with a state-space SIR model', Osthus

Sus (Red), Infected (Blue), Removed (Green), Dead (Black)

Plot of Fraction of Infections/SO for

Flu: Susceptible Flu seasons 2002-2007 and 2010-2013
! D3
0.9
gi ~0.15 Wi
sce V-
(—)0.6 RIS
10 o5 Ho1 1y ]
R(t) 0.4 =010
03 ~0.05 o
02 : {005-
O‘I_A_ 100~
00 40 80 120 160 200 2;90 L T T I I | T
1 ] 0 15 | Pl k]
' Week
Number of Days
125
Season: 35(Wks) x 7 = 245 days - = 17.857

NOTE: In the below Osthus paper, Ry represents the proportion of the population in the recovered
compartment at time t = 0 for the SIR model and does not represent the “basic reproductive number”’

Susceptible Infectious Recovered
[l g - [:' ':l?:" 1
0,020+ 0.4+
08=
0.0954
0.3=
L 0.010+
024
0&= 0005+
- 1 -
~0.5 1 T i 1 0.000 | I I I 0 [ (] 1 1
10 20 30 o 10 20 30 0 10 20 H
Time Time Time
Fig. 2.

Simulated SIR Curve with Sy = 0.9, |, = 0.0002, R, = 0.0998, a =2, and g = 1.4



Some Different Possible Compartmental Models

No One Model is Superior to the Others. They all have their uses. It all depends on the application or goal.
The SIR model, generally, is the only one in which all the compartments (S, I, R) are observable and documented.

Classical SIR Model of an Epidemic: Susceptible, Infectious, and Recovered

Inddividual s S I R
VIrns sfafe .
o Infectious Recovered

Classical SEIR Model: Susceptible, Exposed (Latent), Infectious, Recovered

Individual s S E I R
vIrms stare Susceptible Latent e Infections —————— Recovered
f_pu; i t L [ It [h‘_ i it 'l R fimii
Incubati
ncubation
period

Here is an Extension of the SEIR Model, the SOEAIRD Model
Proposed by Jai for Modeling the Wuhan COVID-19 Epidemic Control Policy

Modeling the Control of COVID-19:
Impact of Policy Interventions and Meteorological Factors, Jai
This Model was extended to include the influence of Quarantine (Q) and Non-Infectious Asymptomatic Hosts , A.
A more comprehensive model would also include Infections by Asymptomatic Hosts.

’T’ N e RN e MR D'f” SQEAIR Quarantine Model
] 2] (2] E i

dt

= —BS(I+64) —pS+AQ

T

| ' ] @ = pS-—AQ
- dt
w : & dE _ 1
d; % = B8(I +6A) — ok
dA .
Compartmental Model: Transmission Spread Dynamics FTil ol —p)E—ecpA—vaA
Some models may have many more compartments to account
for heterogeneity. For example: "A mathematical model df = gpE —~1I —diI — ;1
(Network) for simulating Transmission COVID" has 14. di '
Some models may have compartments for demographic dD .
characteristics (age, gender, location), different modes of P cqdtepldpD=ypl
transmission, mitigation policies, zoonotic routes, symptoms, dB
types of hospitalization, public risk avoidance behavior, states il ot R ol f o

3 ) ) . 1t
of infectiouness, or different methods of case confirmation. ‘



COVID-19 SIRD Data, Model & Predictions Hubei Province, China

An outbreak of “pneumonia of unknown etiology’” in Wuhan, Hubei Province, China in early December
2019 has spiraled into an epidemic. The virus is SARS-CoV-2,a coronavirus.

Simulations until the 29th of February of the cumulative number of Removed as obtained using the SIRD
model. Dots correspond to the number of confirmed cases from the 16th of January to the 10th of
February. The initial date of the simulations was the 16th of November with one infected, zero Removed
and zero deaths. Solid lines correspond to the dynamics obtained using the estimated expected values of
the epidemiological parameters

S0=59x 10%,8=0.193,y=0.063/day, 5= 0.01;

Data from Hubei Province China from 1-22-2020 to 3-12-2020 - Population 58.5 Million

China := READPRN("OWIiD China 19 Jan - April 12.txt")
Hubei := READPRN("K-COVID19-Hubei-Complete.txt" )

Data from Kaggle https:/iwww.kaggle.com/kimjihoo/coronavirusdataset

HPop = 58.5-106 rows(Hubei) = 51

Infected ) Dead W Removed (s)
COVID Data: HInf := Hubei HDed := Hubei HRec := Hubei

Calculate SIRD Model Values for Wuhan of COVID-19 to Feb 10, 2020
W19 := SIRD(59-106,444,0.193,0.063,0.01,40)

HInfSO = 67781

SIRD(S0,1,B,v,0,N )
Susceptible-Sus, Infected - Inf, Removed - Rec Dead-D
Model Results:  Sus = w190 Inf = wio'V Rec = w192 Ded = W19
. . . __B
Inf40 =41252.059 ,@V.: 0.193 = 0.063 A§A.= 0.01 A%\@N.: N+ o RO =2.644

SIR Model: Sus (Red), Infected (Blue), Recovered (Green), Dead (Black)
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Mitigation: Rationale for Phase Transition, Segmented Terminate, Function
The spread of a disease is a physical process with many different contributing factors. Some examples of different
types of physical growth are found in processes such as: the law of mass action, growth in a petri dish, crop
growth, population growth, nuclear reactions, and current saturation in an a MOSFet transistor. As a
generalization, there are three approximate phases of growth: exponential growth, linear transition, and saturation.
Saturation occurs when a growth system runs out of finite buildable land area for the growth of cities. Extended
growth has occurred for 50 years in the semiconductor industry. This has been fueled by extensive research which
resulted in extended sequences of sigmoidal growths of one technology succeeded by a new one.

Different researchers have added their own wrinkles to functional growth such as asymmetrical growth, an
inflection point, and application of limits/bounds through integration. There is a plethora of Functional Growth
Distributions: sigmoidal, logistic growth, beta function, expolinear, and eponymous functions such as: Gompertz,
Richards, Weibull, and Goudriaan. More abstract formulations based on Physics (Hamiltonian, Wave Velocity),
and a host of statistical distributions and curve fitting formulations. There are a variety of different approaches:
deterministic, stochastic, Markov Chain, numerical, discrete, linearization, network theory, engineering solutions,
and approaches such as control theory. Recently, there has been an explosion and spectacular accomplishments in
the application of neural networks and big data techniques to challenging problems. Problems can also be crunched
with modeling packages such as COMSOL Multiphysics, SPSS, SAS, R, Stata, and so on.

Modeling Mitigation - What to do? We will use an amalgamation of the two models. First combining our data
of the daily growth of the initial number (initial exponential growth) of total confirmed cases in the US. Second
applying the known range of RO values for COVID-19 dataset (refects their mitigation work) from Wuhan. There
is a caveat to this data. The epidemic in Wuhan was mitigated by action of an authoritarian government. They
closed roads, locked people in rooms, totally shut down events, had people and healthcare workers with access to
an inadequate supply of masks and respirators, built hospitals in two weeks, and had policemen and drones
patrolling the streets arresting those who did not comply. These are steps that cannot be strictly enforced ina
democratic society. The resultant low Mitigation Rmit values achievable in an autocratic government are not
achievable in a democratic society. Also our concern for the economic and business life of our citizens imposes
limits on extremes and duration of mitigation measures.

The Bottom Line:

What is a reasonable and tractable methodology that can be used to transition from exponential to mitigation case
models? As noted, there are three approximate phases of growth: exponential growth, linear transition, and
saturation. The initial phase of exponential growth needs to transition, to lower Rmit via a viable epidemiological
model constrained by knowledge of the Range in Values of R,. (R is a viable parameter because it has an

epidemiological interpretation.) The bottom line is: What is a good way to transition between growth phases?

Einstein espoused a principle for the construction of theories: “A scientific theory should be as simple as
possible,but no simpler”. We will apply this principle of parsimony.. We will transition from the large Re ffective
value extracted from the initial exponential growth data coupled through a linear region via a decreasing sigmoidal
curve to the region of a smaller overall average mitigation R,,;; value. A sigmoidal curve has some nice features

such as a smooth transistions and a zero slope at the ends of the phases. We use the average value of R, (includes

the results of their mitigation policy) calculated for the Wuhan epidemic. The model is to be consistent with the
dynamic epidemiological SIR model. We will now work out the details and parameters of the transition.

Sigmoidal Segmented Terminate Transition Function.

Our sigmoidal transition function has two paramaters: The time of transition from the exponential growth rate to the
linear rate, t,) and the time in days to transition from exponential to the saturation phase/mitigation region, t.es. Of
these, the most critical is the time for the end of exponential growth, and enforcement of mitigation policy, t.;. We
will use multiples of the transition time for one doubling of infections cases, or 2.5 days to transition from the
exponential phase to the R, saturation/mitigation phase.



Limits to Exponential Growth: The Sigmoidal Transition Function

The Transmission Rate, 3, for Infectious Diseases generally changes with the spread of an epidemic.
Some different possible ways in which the Transmission Rate can change are:

(1) The bilinear incidence rate BSIwhere 3 is the average number of contacts per infected individual per day.

(2) The standard incidence rate BSI/N
(3) The Holling type incidence rate of the form BSI/(1 +a; S).

(4) The saturated incidence rate of the form BSI/(1+ a,I)
(5) The saturated incidence rate of the form BSI/(1+0,; S +a,])
The bilinear rate is the Law of Mass Action.

2 Scenarios: Worst Case - Exponential R+ vs. Government Intervention/Mitigation to Lower R ..

Consider two different scenarios for epidemic growth. A worst case model that matches the initial exponential
growth well, but then gives a large estimate of both infectous growth and the effective reproductive number,
Reffective. Then we have a best case model where we use the mean R, value of 2.6 (range of 2.4 to 2.8)

estimated for the Wuhan COVID-19 breakout, which was obtained with strong Government Intervention.

Is there a more general way to model a transition from Wuhan R;,;; Exponential Growth to a Final Mitigation R,,;;?

Below is sigmoidal transition function, g(t, t.;, a,,,.z), to Model Mitigation to 8, at time, t,
Model Government Mitigation as Transitioning Between Two Transmission/Contact Rates, B, & B,.i¢

S, is the approximate period that doubles the total number of Infections Seg == 2

tyy, time to transition from the end of the exponential phase, f3,, to a lower By, at the start of mitigation

Somewhat equivalently, think of this as transitioning R

effective

Length of Transition R —R._.
. - - exp mit
Variable z gives multiples of 2 days RSM(t’tel’ Rexp Roies z) = Rexp -
of transition periods for the _ [(t Seg 1>_(4+tel'ses' 7 1)}
transition to the final mitigation, R L+e

In the SIR Model. the parameter of greatest interest is the Transmission rate, 8

B 1 . . Binitial ~ Bmit
= A= 1o 7O fesi 2 Bsim(®- tel> Binitial- Bmit-Z) = Binitial - "
R - |:t-ses z —(4+tel-ses-z )}

Byt is some fraction, (30 to 90%), of Binisal l+e
"Phase-adjusted estimation of number of CPVID 2019 cases in Wuhan, China”, Wang
R_wks: Reproduction Number Data from Phase-Adjusted Rt Study of Wuhan
R_wks := READPRN("Phase-adjusted estimation of Rt COVID 1-1-19 to 4-26-20 cases in Wuhan China.txt" )

RR := rows(R_wks) RR =22 wks:= 0..RR -1
Wuhan Mitigation: Phase-Adjusted Rt Phase Adjusted 3 Model,z=123

3.: Z:j Plotis fort, =7 days

3 |
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Below is the Discrete Algorithm for Implementing the
SIR (SIRM) Sigmoidal Transition Mitigation Model

We will refer to this as the SIR Mitigation Model or SIRM

SIRM(S0, 1. B, Bpyigs tel: 2:7:N) = | S <= SO

IO<—IO

D0<—RO<—0

8 < 0.009

(MO’O Mo Mg, MO’3)<—(SO Iy 0 o)

for ne 0..N

«~S - _'Bsm(n’tel’ B, Bmi'[’z)'ln

n
I «1 + 5-Bsm(n,tel,@,Bmit,z)-ln —(V+ 81




Below is the Discrete Algorithm for Implementing the
SEIR (SEIRM) Sigmoidal Transition Mitigation Model

The SEIRM Model is the SEIR Model with  replaced by the Sigmoidal Function:

SEIRM(S0,1j, B, Bits tefs 2.V, N) = | S, < S0
E, « Io1.23
1
€ < —
3 < 0.009
R0<—O
(MO’O Mo Mg, Mg 5 M0’3)<—(SO Ip 00 EO)

for ne 0..N
S

n
ne1 < 50 5o Pm(™tel: B B 2) T,

S
n
E ., <E -¢E + 5-Bsm(n,tel, B.Bmit-2) 1,

I e In + s-En —-(v+ 6)-1n

R, <R+ |q(|-1n




Methodology to Extract Mitigation Parameters for Hubei
China Applied Mitigation to Contain their COVID -19 Epidemic. Can we Model Mitigation?

SEIRM Model Mdl(B,Bm,te,N) = SEIRM(59~106,444,B,Bm,te,l,é,N) Mod(B,Bm,te) = Mdl(B,Bm,te,49

)< »

SIRM(80, 1y, B, Bnigs g 2 -N)

Initial Guess (SEIRM Params): (NQN Am te):: (0.19 0.063 20)

Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between the current data points HInf, HRec, HDed and SIRDModel
Residual(B, Bm,te) := HiInf — Mod(B, Bm,te) Ri= rows(HInf) R =51

Condition to Minimize the Residual Least Squares Fit Error Using L-V Minerr Method
T (b bm te)=(0.703 0.165 17.732)

Given 0= Residual(ﬁ, Bm,te) (b bm te):= Minerr(B, Bm,te)

Infected oW o R

ER
HIf := Mdl(b,bm, te, 140) HRc := Mdl(b,bm, te, 140) HDd := HIf-0.03 T =543.934
HS := MdI(b,bm,te, 140)<0> Rp = rows(HIf) = 142 q:=0.. Rp — 1 HDe := submatrix(HDd,0,21,0,0)

Good Match of SEIRM Mitigation Model (Curves) to Data (SymbolsA)

Model vs Data - China: Infected (Blue), Recovered (Green), Dead(Black)

7%10* 1x10°
4
6x10
8x10"
4
Hinf, 5<10 HDd,
AAA g =
HIfg 410 6x10"  HSs,
HRec, . HIf
3x10 4 ===-
HRe, 10" HRe,
210 o
4
2x10
1x10*
0™ 0
80
n,q,n,q,9,9,q
d:= 0.005
AN
Extracted Parameters of Hubei/Wuhan COVID-19 Epidemic
. . . 1
The number of days it takes infections to double, t., o= E thy = 1.423
The number of days it takes to recover, t =
y TeC Aveov 6.8 trec = 6.8
Basic Reproductive Ratio R, = b Rps = b R =10333  Rys = 10.333
p AN 05 - o =10 05 = 10

S+~ _6+'Y

before and after Intervention:



Extracting RO from Loqg Plots of Hubei Infected

t

t
(R—l)'(+) log(Inf(t)) =log(ly) + R - 1) ———
Inf(t) = Info-e Infectious_Period g(Inf(1)) g( O) ( ) Infectious Period

HInf20 := submatrix(HInf,0,20,0,0) k:= 0..20 Xk =k+1 (k) := 400 exp| (4 — 1)

B
10

Hubei COVID-19: Infected (Blue), Recovered (Green), Dead (Black)

1x10°
1x10°
F(n)
Hin, 1000
D
100
10
0 5 10 15 20 25 30 35 40 45 50
n
Number of Days
Find the Slope to the Log Plot of Infected to Get an Estimate of R0
m:=0.15 HIm := HInf daz =m Assume Infectious Period is 10 days
m m m
R —> T
LM := log(HIm) LN := log(HInf) y(X) =s-X + int F(x)=(x 1)
. 0.126 R-1
linfit(daz, LM, F) = slope(daz,LM) = 0.126 slope = ———M8M8M8™ ™M —
2.587 Infectious_Period
Linear Fit, LY, to Log of the Curve of Initial Infected: LY(m) := 0.126:m + 2.587
R (slope, Infectious_Period) := slope-(Infectious_Period) + 1 R(1(0.126,10) = 2.26
The semi-loqg plot below of Hubei Infected vs. Time reveals that after 15 days,
the epidemic was no longer exponential ==> Containment was successful.
Hubei Epidemic: Estimation of Initial RO from Slope of Log(Infected)
5
4
LN,
L ]
LY(m)
-3
2
0 5 10 15 20 25 30 35 40 45 50

n,m

Number of Days



Spatial Aggreqgation by State: Estimate Infect Growth Rate

Downloaded Johns Hopkins Data From: March 10 to March 22 2020 Row 0 JH_SPis # of State
https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/

Read Data Files: JH SP := READPRN("JHU State-DCUSNo, Index, Confirmed Sort OtoP1 3-10- to 3-22-Pop A P-A..txt" )T
JH s := submatrix(JH_SP, 1,13,0,50) Datafrom March 10 to March 22 Sort by Number of Cases
R = rows(JH_s) = 13 r=0.R-1 z=R-1 dayzr =T G,= cols(JH_s) =51 5i=0.C-1

Compare All States: Normalize Infection Curves for all States so Each has a Maximum Value of ''1"

Increase Resolution: Multiply Infection Exponential Rate Values X 10 gx = (1 0_3)T F(x,v,m) = ve X
JH_sr c © T T
JXyr o= JH—, (Vc mc) = genﬁt(dayz,JXy ,gx,F) X(j ,k) := submatrix(m,j,k,0,0) -10
’ S
=12
¢ myyg = mean(m) = 0.292 Mg 10 =2.917

All States: Estimate the Growth Rate from Slope of Log of the Infected vs Days Data

Increase Resolution: Multiply Slope of Log Number Infected vs Time Rate Values X 10
T . ( <c>) o . . T
LY = log(JH_s) SLPC := slope\dayz,LY ~ )-10 S{i,k) = submatrix(SLP,j,k,0,0)

State Growth Rates Estimates -2 Methods: Exponents*10 ==> X, Slopes*10 ==> S
NY-1 FL-7 USA-50 CA-3 WA-0 CO-6 NJ-2

NY WA NJ CA IL M LA FK MA TX GE
X(0,10) = 0 1 2 3 4 5 6 7 8 9 10
0| 3.966| 1.51| 3.921| 1.912| 3.566| 4.294| 2.921| 2.686| 1.986| 3.127| 2.701
$(0,10) = 0 1 2 3 4 5 6 7 8 9 10
0| 1.706| 0.699| 1.825| 0.888| 1.54| 2.864| 2.076| 1.451| 0.71| 1.399| 1.328

PE TE co Wi OH NC MY CN VG M IN

X(11,21) = 0 1 2 3 4 5 6 7 8 9 10
0| 2993| 3.92| 2.115| 3.317| 3.478| 3.221| 2.811| 2.622| 2.427| 4.59| 3.784

S(11,21) = 0 1 2 3 4 5 6 7 8 9 10
0| 1.354| 1.486| 1.143| 1.693| 1.744| 1.408| 1.295| 1.791| 1.148| 2.756| 1.138

sC NV UT MN AR OR AZ MO KY 10 MN

X(22.32) = 0 1 2 3 4 5 6 7 8 9 10
0| 2968 2.687| 2.972| 2.293| 3.477| 1.965| 3.716| 3.977| 2.738| 2.221| 2.591

S(11,21) = 0 1 2 3 4 5 6 7 8 9 10
0| 1.354| 1.486| 1.143| 1.693| 1.744| 1.408| 1.205| 1.791| 1.148| 2.756| 1.138

RI OK NH KN NM VT NB HA DL ID MT

X(33.43) = 0 1 2 3 4 5 6 7 8 9 10
0| 2.231] 2.732| 2.222| 2.779| 2.089| 2.76| 1.695| 3.201| 2.503| 3.637| 2.686

§(33,43) = 0 1 2 3 4 5 6 7 8 9 10
0| 1.12| 1.519] 1.097| 1.634| 1.575| 1.465| 0.861| 1.269| 1.901| 2.341| 1.658

X(44,50) = (3 ,\218Dl 2V\3/;8 3A4|1_59 f?)62 Vé\l/\g99 D2C 71 LSJSZI 1) Note the Wide Range of Growth Rates
’ ' ' ' ' ' ' ' between the States. Physical/Social isolation/distance
5(44.50) = (2.079 2.049 2.089 0.923 1993 1.023 1313) ke some State populations less inaccessible.




STATE PLOTS ARE IN THIS ORDER TOPTO BOTTOM
WA-1 CA3 FL-7 USA51 NY-0 NJ-2 LAG

States and USA - Total CVID-19 Cases/Day

JXy< D

JXy<3> 0.8

JXy<7>

0.6
JXy<51>

JXy<O>
0.4

Total Cases

IXy

(&)
Xy 02

dayz

Estimate the Basic Reproduction Ratio R, for the Four States and USA:

Reproductive Ratio R, Rank (Listed in Order Below): NY, FL, USA, CA, WA

SV
slope(dayz,LY )_ 0.07 Rpp(0.164,10) =2.64 Slope( dayz. LY<2>) = 0.183 Rqy (0.092,10) = 1.92

(3
slope(dayz,LY )_ 0.089 Rp(0.155,10) =2.55 slope(dayz,LY<O>) — 0,171 R (0:074,10) = 174

slope(dayz,LY<4>> =0.154 R (0.128,10) = 2.28

Assumptions Used for SIR Mathematical Epidemiological Model

Refer to the SIR Model given on page 7.

The Dynamics of an epidemic can be expressed by the rates of change of three Compartments or groups:
Susceptibles or Healthy (S), those that are Infected (I), and those Recovered (R). The dynamics of S, I, R, canbe
described by three non-linear deterministic differential equations.

Some Assumptions of Compartmental SIR Model:
The model's transmission rate probabilities (3, v) and the Basic Reproductive Ratio Ry, are constant during the

outbreak.

A person who transitions to the infected group immediately becomes infectious. There is no latent period.

All individual have the same rate of recovery, y. If the duration of the infection is D days, then the transition rate, v,
from I'to R is the reciprocal of D. The duration (average generation) of the infection for COVID-19is ~ 10 days.
The population is homogenous and well mixed (homogenous mixing within the populations Iand S). In actuality,
people interact in complex social networks (communities) that have different fundamental structural properties.
In a Population, N, spread is by the Law of Mass Action, that is, the number of new cases per unit time, or rate, is
proportional to the product of the number of Susceptible and the number of Infections people,= § * [ * S/N

The rate of decrease of the healthy population, dS/dt, is proportional to the product of the number of healthy
people and the fraction of the total population that is infected.

People are no longer infectious after 1/y days and are afterwards immune. The Iand R case records are accurate
and can be used to extract the magnitude of .



New York City Data

https:/imww1.nyc.gov/assets/doh/downloads/pdfiimm/covid-19-daily-data-summary.pdf

Cases := READPRN("NYC Inf 3-13 to 3-30 2020.txt") Re = rows(Cases) j=0.Rc—-1 JNy := Cases
Rc =18 i=1.Rc-1 NewﬁCasesi = Casesi - Casesi_1 Jij =] NCs := New_Cases

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate

NCs.
1
rate. := 100 —Cases. 1 CasesRc_1 = 38087 rate := rate + 1 rateavg — mean(rate) = 41,189
i
In(2)
Calculate the Number of Days Dbl = ————— Days to Double: Dbl = 2.01
for Cases to Double - Dbl: ul 1 rate,yg
" 0o DbliDays(JNyRC_l : lOO,Rc,O) —2.1
gx:= (100 0.3 )T K(x,v,m) = ve (v m) := genfit(JNx, Ny, gx,F)T m =0.178 fx(t) = ve™

guess := (1 0.01 1)T (a k ¢):= expﬁt(JNx,JNy,guess)T (a k ¢)=(7398.75 0.111 -9307.034) Fe(x) := a~eklx+ c

Exponential Growth ==>NY Epidemic (1) = 1(0)elP~Mt Ry, =m10-1=0776
NY- Total Cases/Day

Daily Increase

4
6x10
- 5x10° —
5x10 L
8 4 4x10° M
2 Ny 410 .
O oo 3104 3x10 ]
s &) ) NCs ,
o 2x10 2x10
= 4 3
1x10 1x10
0 2 4 6 8 10 12 14 16 18 20 0

0 2 4 6 8 10 12 14 16 18 20

INx, t
X INx

. . . — -5
NY Reproductive Ratio Ry : M = log(Cases) slope(JNy,LM) = 5.548 x 10"~ Ry (0.137,10) = 2.37

NY: Left Log Exponential Fit & Cases, Right Linear Cases

1x10° 1x10°

ix10®
110
1x10® ()

5 Cases
1x10 o6

1x10*

1x10°

Total Number of Cases

100
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
t, INx, t, INx

Number of Days from Initial 100 Cases



New York State Data

https:/fen.wikipedia.org/wiki’2020_coronavirus_pandemic_in_New_York (state)

Cases .= READPRN("NY CV-19 Inf 3-3 to 4-12 2020.txt" ) Re:= rows(Cases) j:=0..Rc—1 ANy,= Cases

Rc =41 i=1.Rc—-1 New_Casesi = Casesi - Casesi_1 Jij =] NCs := New_Cases

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate

NCs.

i 5
rate. = IOOWS1 CasesRc_1 =1.867 x 10 rate := rate + 1 rat = mean(rate) = 41.786

i AARrang

Calculate the Number of Days Dbl ;= _ W@ Days toDouble: Dbl = 1.985
for Cases to Double - Dbl: | (1 . rate gj
n p—
100 Dbl_Days(JNyRc_l : IOO,Rc,O) =3.773

gx:= (100 03) Fox,v,m) = v-e™ ™ (y m) = genfitONx, Ny, gx,F)]  m=0.098  fx(t) == ve

NIM: m-10 — 1 =-0.02

(a, k. )= expﬁt(JNx,JNy,guess)T (a k ¢)=(11641.922 0.074 -22313.21 Fe(x) = a-ek'X +c

Exponential Growth==>NY Epidemic Nsm:= supsmooth(JNx, NCs)
NY- Total Cases/Day Daily Increase
2x10; 1.5¢10"
1.8¢10] )
) 1.6x10 1.2x10
2 &% L4x10] - \
S
S 1.%85 D 9x10
S 8x10" Nsm 610
S gl
410, 107
2x10
0 0
0 5 10 15 20 25 30 35 40 45 15 20 25 30 35 40 45
INx,t,x JNx
. . — _s
NY Reproductive Ratio I LM:= log(Cases) slope(INy,LM) = 1.761 x 10 Ry (0.137,10) = 2.37
L MM g p y OL
NY: Left Log Exponential Fit & Cases, Right Linear Cases
1x10° 1x10°
n
[P}
3
&) 1x10° 1x10
(N
° F Fe(x)
g Fe 4 6
e 1x10 1x10
g Cases Cases
5+ + ¢
z ¥ 1x10°
3 1x10 x
@)
= 4
100 : 1x10
0 5 10 15 20 25 30 35 40 45 50 55 60

x, JINx, x, INx

Number of Days from Initial 100 Cases



Methodology to Estimate the Outcome of the NY Epidemic

Our methodology is similar to most papers, the major difference is we use Mathcad's US_A: m =0.248
Error Minimization function Minerr, not Python, R, or MATLAB's Minimization Tool. B _(?214 8+01
_1a=0. +0.
Assume that 80% of the Population is Either Not Susceptible nor A ccessible L=11 ! a=0319 R{) = 4.49

6 . . ’ *

SIR Model So = 19-5:10-0.8  Sqis Population ModN(B) = SIRD(SO,Z, B,L,8,Rc — 2) t
) o (1) = 1y¢ P
InfN(3) := ModN({3) SU(B) := ModN({3) ISU(B) := stack(InfN(3), SU(B))

Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual
Define a Residual to be the difference between the current data points JNy and SIRD Model

INS = stack[JNy,(so - JNy)] ResidIN(B) := NS —ISU(B)  Given 0 = ResidIN(§3)
M T _b_
Use Minerr to Extract Optimal Parameters: Ry= Minerr(3) b=0435 Rai=7 =47
Infected oW Removed o Dead E
UIf := ModN(b) ! URc := ModN(b) UDd = UIf-0.03 T =31075.158
b
n:=0..Rc-1 R = ——=4112 UDe := submatrix(UDd,0,13,0,0
OSIR ™1 4 0015 ¢ )

Extracted Parameters of NY COVID-19 Epidemic
Imax, Calculate Days to Double, D2X and Fit Power Function to USA JH Data

Guess ex:= 1.4 FitPwr(ex,t) := JNyO-ext lax = 1(0) + S(0) = viB log S(0) = vIB + viIB log VI

—_—
ResidINj(ex) := INy — FitPwr(ex,JNx) ~ Given 0 = ResidIN,(ex) Ex := Minerr(ex) Ex =1.344
. . . In(2
Fit JHy with a Power Function, PWR(t):  Pwr(t) := JNyO-Ext D2X(Ex) := % D2X(Ex) = 2.345
n(ex
Dbl Days(9415,100,15,0) = 2.288
. . . 1
The number of days it takes infections to double, t.,, fawi= T x = 2.296 b= 0.4?35
. 1 Rp = =4.541
The number of days it takes to recover, t . N =0.063 o= T trec = 11 VT s
. . 1D , (2 . {0 .
Proj = SIR(S0,2,0.186,L, 180) PIf := Proj PRc := Proj PS := Proj A%pv': rows(PIf) = 182
m = O..Rp—l Rp—l =181
No Mitigation Scenario: Approximate Match to Early NY Total # Cases
. 1 1D (2 {0
Proj := SIR| S(,,2,b,—,60 PIf := Pro PRc := Pro PS := Pro R = rows(PIf) = 62
] ( 0 . ) ] j ] R (PIf)
m:= 0"RD_1 RD_ 1 =61 max(PIf) =3.819 x 106

NY': Infection Cases vs. SIR Model Sus, Infections, and Rec

24107 6x10*
1.8x10’ A
INy, L éx107 5x10
7 n
PIf,, 1.4x10] ax10" ® @
() 1.2x10 PIf,
110’ 3x10* 'f;('x)
PRc 6
m 810 4
PS 6x10° 210" PRy,
m 6
4><106 1x10*
210
Starts M 0 6(())

INx,,m,x,m,m,JNx,, m,x, m



Mitigation: Model with Sigmoid Transition to a Lower R ¢

1
ProM = SIRM(SO,z,b,b, 180,7,3, 180) PIf = ProM<1> PRc = ProM<2> PS = ProM<0> A%pv: rows(PIf) = 182
Ds = ProM<3> Rd := rows(Ds) = 182 u:=1.Rd-1 Total Deaths := ZDS Total Deaths = 1.391 x 106

Rc=41 m:= 0..Rp—l Rp—l =181 Imax := max(PIf) Imax = 7.124 x 106

No Mitigation: NY Infection Peaks by April 15th - It has infected everybody
TWK: Infection Cases (Blue) vs. SIR Model Sus, Infecti, and Rec

24107 T v 1x10°
\

1.8<107 i v 9x10°
' )

Ny, 16¢10" ! \ 810° g,
== 7 \ S & @
1.4x10 i ) 710
PIf 1\ v PIf
—_— 1210 Model ! \ 6x10° ==mn
fx(x) ’ ; Matches J<= ks April 15th \ s ()
1x10 US Data=——> ? % ‘\ 5x10
PRe =" " - A PRc

™ ge10f < Tma!#f‘?‘( 20 >< ‘\ 4x10° m
1 \
[ KN At 2o
\
4x10° / \\ 12¢10°
2¢10° / / N\ 1x10°
7 \=

0 = 0
0 10 20 30 40 50 60 70 80 90 100

INx,, m,x, m, m,JNx,, m,x, m,u

Mitigation Reff => 0.476 @ 47 Days: NY State Infection Peak with Transition

Rc=41 MR34:= SIRM(SO,2,b,0.07,28,7,ﬁ,80) PIf34 := MR3»4< v PRc34 := MR34<2> PS34 = MR34<0>

D34 := MR34<3>‘ Total Deaths := ZD34 Total Deaths = 94783.722

# Infected at the Exponential Transition Point 5
Imax := max(PIf34) Nmax := match(Imax,PIf34) Nmax =(50) Imax =3.42 x 10

TK: Infection Cases (Blue) vs. SIR Model Sus, Infections, and Rec

210
1.8x10*
L6x10" iy
i o ®
1.4><104 b
12x10% ==--
)
1x10
PRc34
8000 m
D34,10
6000
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.. 0
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USA Data Directly Our World in Data

https://ourworldindata.org/coronavirus

Read Data File: JH USA := READPRN("OWD US Date, TC NC TD ND 3-3 to 4-29.txt") March 3 to April 25
JHy = JHiUSA<3> Cases = JHy Re = rows(JHy) JHyRC_1 =1.013 x 106 j=0.Rc—-1
Rc =58 i=1.Rc-1 Jij =] daysi =1 rows(days) = 58

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate
NewﬁCasesi = Casesi - Casesi_ NC := New_Cases

New_Cases. 6 1
rate. == 1()0?&1 CasesRc_1 =1.013x 10 rate := rate + 1 ratewg = mean(rate) = 19.012
i
Calculate the Number of Days Dbl ;= __ @ Days to Double: Dbl = 3.982
for Cases to Double - Dbl: ul 1 rate, g
= 100 Dbl Days(26138,100,17,0) =2.117

a=1 b=001 ¢:=1 guess:=(a b c)T gx := (100 0.3)11\lfvgx,v,m) = ve ¥ (y, m):= genﬁt(JHx,JHy,gx,F)T

m = 0.059 M: m-10 — 1 =-0.409
Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases
) N
(fa, b . ¢c):= expﬁt(JHx,JHy,guess)T (a bc)= (1.573 X 105 0.038 —2.342 x 105) Fe(x) i= ve ln(;)
fit(x) = ae”  + v=40282.182 b =0.038 Days to Number, N: dy(N) =
x:=0..100
Exnonential Growth ==> UJS Enidemic Nsm := supsmooth(JHx, NC)
MWW
. USA- Total Cases/Day Daily Increase
! -
@ 8x10° 4.5¢10,
g 7X105 4>< 104 |
< JHy 6><105 3.5><104 | o
© 5x107 New_Cases 3410, 10
E ﬁt(X) 4><102 Nsm 2‘5X104 1
° 3x10 - 2¢10,,
= 5 1.5x10
2><105 : 4
1x10 1><103
0 5><100
0 5 10 1520 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60
JHx, x
JHx
. . —
US Reproductive Ratio Ry : M = log(Cases) slope(JHx,LM) = 0.07 R (0.137,10) = 2.37

USA: Left Log Exponential Fit & Cases, Right Linear Cases
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Methodology to Estimate the Outcome of the USA Epidemic

Our methodology is similar to most papers, the major difference is we use Mathcad's
Error Minimization function Minerr, not Python, R, or MATLAB's Minimization Tool.

Assume that 80% of the Population is Either Not Susceptible nor Accessible

8 . .
SIR Model So.= 3-2:10-0.8 Sqis Population ModU(B) := SIRD(SO,IOO,B, 8,5,Rc— 2)

L
N ) N
IfU(B) = ModU(B)' " SU(B) = ModU(B)"  ISU(B) = stack(InfU(B), SU(B))

Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between
the current data points JHy and SIRDModel

ResidJH(B) := JHy — InfU((3) Given 0 = ResidJH({3)

M T _ _b_
Use Minerr to Extract Optimal Parameters: Ry = Minerr(() b=0337 Ra= 7 =3703
InfAantnd DaAarnaAund Dead
ERR
UIf = ModU(b)<1> URc = ModU(b)<2> UDd = UIf-0.03 — - 1.503 x 105
b
n:=0.Rc-1 R = —— =3.179 UDe := submatrix(UDd,0,13,0,0
WASIRY™ 10 015 ( )

Extracted Parameters of USA COVID-19 Epidemic
Imax, Calculate Days to Double, D2X and Fit Power Function to USA JH Data

Guess  gx:= 1.4  FitPwr(ex,t) = JHyO-ext ... =1(0) + S(0) - vig log S(0) - VIR + vIB log VIR

—_—
ResidIHo(ex) := JHy — FitPwr(ex,JHx) ~ Given 0 = ResidJH,(ex) Ex:= Minerr(ex)  Ex=1.184

Fit JHy with a Power Function, PWR(t):  Pwr(t) := JHyO-Ext Dbl _Days(9415,100,15,0) = 2.288 D2X(Ex) = 4.111

. . . 1
The number of days it takes infections to double, t.,, faw= 7 tx= 2.97 L= o,()9}3
The number of days it takes to recover, t . N =0.063 ftoi= 1 tree = 11 Rav= L+o 351
L

USA Mitigation R0 =>0.476 (@ 28 Days: Infection Peak with Transition

1
Proj := SIRM(SO,100,0.5,0.07,28,3,6—8,120) PIf := Proj<l> PRe := Proj<2> Ds = Proj<3> PS = Proj<0> Rpy= Tows(PI)

Imax := max(PIf) Imax =2.089 x 106 Nihax = match(Imax,PIf)  Total Deaths := ZDS Total Deaths = 3.458 x 105

TWK Mitigation Scenario: Reasonably Good Match to USA Cases to Date
USA: Infection Cases vs. SIR Model Sus, Infections, and Rec

8
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CDC: Data on USA Total Confirmed Deaths

https://ourworldindata.org/coronavirus Today := 57
Read Data File: FL Deaths := READPRN("US HD Deaths MLH 3-1 to 4-27.txt") Re = rows(FL_Deaths)

(o

FDN_m = FL Deaths Re=1371i:=1.Rc-1 j:=0.Rc-1 JFX]. =] Dpgw = submatrix(FL_Deaths,0,33,0,0)

no
J J J

FD_m, := Z FDN_m,  FD_L, := Z FL_Deaths, | FD_H, = Z FL_Deaths;
i=0 i=0 i=0

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate

FDN_m,

1
rate. := 100 ———  rate ;= rate + 1 rate = mean(rate) = 9.406
A FDfmi_1 AVANE

Deaths to Data and Range Projections Dsm:= supsmooth(JFx, FDN_m)

Deaths: High, Mean, Low New Deaths & Smoothed
5 3
1.2x10 0y | 3x10
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FDN m
FD 4 .
Dm0 o 1.5%10°
Dsm
FD L . —
— 410 1x10°
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USA: Log Deaths, Projected High, Mean, Low
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Florida Data

Update New Cases from Bar Chart:
Read Data File:

J
i=1.Rc—-1 j:=0..Rc—-1 Jij = Z NCfsi
i=0

https://experience.arcgis.com/experience/96dd742462124fa0b38ddedb9b25e429
NCfs := READPRN("FL Cases 3-11 to 5-5.txt")

Re:= rows(NCfs)  Re =55 NCfSRC—l =589

JFxx. =] _
j JEy Ry = 37760

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate

NCfsi
rate. := 100
Calculate the Number of Days Dbl :=

for Cases to Double - Dbl:

Exponential Growth ==> FL Epidemic

In(2)

i rate
Inj 1 + ave
100

rate := rate + 1

ratemg = mean(rate) = 10.544

Days to Double: Dbl = 6.915

DbliDays(JFyRC_l JFyy.Re, o) = 4.436

Days to Number, N:

. . N
gx = (100 0.3 )T F(x,v,m) = ve (y, m):= genﬂt(JFxx,JFy,gx,F)T Fe(x) = ve ¥ - ln(;)
e 0. 100 v =13908.15m = 0.045 Rome= m10 -1 =-0.55
Dsmf := supsmooth(JFxx, NCt
\ FL- Total Cases/Day New Cases
4x10 3
4 163107
3.5¢10, 1.44x10
3 -
310, 128107 . —
1.12x10 T
JFy 2.5><104 NCfs X960 |
Fe(x) 2X104 . 800 H ~
A 15x10 Dsmf 640
4 —
1x10 480
5%10° 320
0 160
0
10 15 20 25 30 35 40 45 50 55 60 b0 15 20 25 30 35 40 45 50 55 6
Death_Rate IF
— XX
- - %
FL Reproductive Ratio R, : LM := log(JFy) slope(JFxx,LM) = 0.05 R (0.137,10) = 2.37
FL: Left Log Exponential Fit & Cases, Right Linear Cases
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Florida Deaths: IHME Projection Mean, High, Low

Read Data File:

FDN_m:= FL_Deaths

J

FD_m, := Z FDN_m,

IHME https://covid19.healthdata.org/united-states-of-america/florida

FL.Deaths :== READPRN("FL Deaths MLU Total MLU 3-14 to 4-27 to 6-25.txt") Rc := rows(FL_Deaths)
NMVWWWWWWWWWWW MWW

(o

i=0

Rc=104 i:==1..Rc—-1

J

i=0

FD_L, = Z FL_Deaths; |

j=0.Rc—-1

JFx]. =] Dpyow = submatrix(FL_Deaths,0,33,0,0)

J
FD_H, := Z FL_Deaths, April 16: ZDnow: 666

i=0

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate

rate. .= 100
MWWY

FDN_m,

FD_mi

-1

rate := rate + 1

rate

MNVWANEA

Deaths to Data and Range Projections

Deaths: High, Mean, Low

= mean(rate) = 8.009

Todayi= 45

Dsm := supsmooth(JFX,FDN_m)
NMWVWW

JFX. =
i J

New Deaths & Smoothed (Blue)
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Lee County Florida Data - Download From Github

https:/github.com/CSSEGISandData/COVID-19blob/master/csse_covid_19_data/csse_covid_19_time_seriestime_series_covid19_confirmed_US.csv

Read Data File: JFy := READPRN("FL Lee County Total Cases to 5-6.txt") Re¢ = rows(JFy) JFyp. g = 1176
1=1.Rc-1 j=0..Rc-1 New_Casesi = JFyi - JFyi_1 NC := New Cases JFxxj = ] Rc =61
Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate
NCi
rate. = 100 rate := rate + 1 cat — mean(rate) = 7.575
JEY._, AKRangn (rate)
In(2)
Calculate the Number of Days Dhl= ————— Days to Double: Dbl = 9.492
for Cases to Double - Db: ul 1 rate,yg
" oo DbI_Days(TFyp . JFyg,Re,0) = 6.631
Exponential Growth ==> FL Epidemic
Days to Number, N:
= (100 0.3)" F = ve™X = genfit(JFxx, JFy,gx,F)|  Fe(x) = v Inf =
gx = ( 3)° F(x,v,m) = ve (v, ) = genfit(JFxx,JFy,gx,F) " Fe(x) := v-e o v
<= 0. 100 v=290.642 m = 0.045 M: m-10 — 1 =-0.546
Dsmf := supsmooth(JFxx,NC)
FL- Total Cases/Day Lee County New Cases
1.4x10° 100 -
1.2¢10° 20
3 80
1x10 70 -
e 8w 2¢ @ : _
Fe(x) 600 Dsmf -
400, 30 ik -
20, - -
200] 10 h
0 0
5 10 15 20 25 30 35 40 45 50 55 60 65 5 10 15 20 25 30 35 40 45 50 55 60 65
Death Rate JFxx
- - %
FL Reproductive Ratio R, : LM := log(JFy) slope(JFxx,LM) = 0.051 Ry (0.137,10) = 2.37
FL: Left Log Exponential Fit & Cases, Right Linear Cases
1x10° 1x10*
n
[P}
wn
<
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G
C ¥ Fe(x)
5 , Fetx
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g JFy NCfs
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Z
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Lee County, Cape Coral: Risk of Getting Infected

Chance that any One person we meet in Lee County has COVID-19

Lee County New Cases per Day Florida R Values vs. Time
100 http://systrom.com/topic/coronavirus/
90 I
80 Likely Under Control
70 AR
- /r -]
60| -
50| — ] 1 i Lockdown
40, T | - ) Full Il Partial Il Mone
30 STH | 1 5 4
20, H H T
0 (il
5 10 15 20 25 30 35 40 45 50 55 60 65 1.0 -
Estimate 13 N l
People are Ny peciious = Z NCp. . =382 ) o
. R Numbers in FL 1
Infectious 4 n =0
for 14D Dx is Factor for Confirmed yp 4 1 1 1 1 | 1 |
or ays vs Detected Infectiong plani e _;_ U g
N . -Dx ¥ = 5 = T = .
3 Infectious L 5 & &2 6 2 E O
Lee_Pop:= 771-10"  Proby o gy (Dx) := = N T 5 7 O 2 E S & 7
Lee Pop TS E e 2k = 2
Probability Being — m— 4 E = 2 O 2
Infected in Lee Co. ' "°°LeeFL =170 = Z

Chance that any one person we meet in Zip 33991 has COVID-19

https:/iwww.capecoral.net/government/city_government/city_manager/covid-19_info/index.php
Cape Coral Zip 33991 Number Cases  Calculate Probability of Being Infected in Zip 33991

= Pop in Zip in 33991:  Pop_Zip := 29075

- - ' 14

s Prob =

& 33991 p op__Zip

kol

= = Pr0b33991 =0.048-%
D v o Probability of Being Infected by Group of N People in Lee Co
R— :. Assumptions: Infectius for 14 Days, Dx is Range Confirmed vs. Actual Infected
= - g
e - Proby, r(Dx,N) := [1 ~ (1 = Proby ¢epy (Dx)) } 100

Probability (%) of Getting Infected in a Group of N people in Lee County, FL.

Probability Spread (%) Becoming Infected vs. Number People in Group

40 -

36 - :
Prob; ¢(10,1)32 _32
I | 28 I 28
Prob 1,n) 24 I 2
a== | ”l || L e,
Proby «(5.n) 16 I I 16

12 I I :
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> gl _:4
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New Orleans Cases

https:/fen.wikipedia.org/wiki’2020_coronavirus_pandemic_in_Louisiana

NO = READPRN("New Orleans 3-10 to 4-1-2020.txt") Cases := NO JHy := Cases Re := rows(Cases)
Rc =23 rows(Cases) =23 p:=0..Rc—-1 i=1..Rc—-1 dxp =p rows(dx) = 23

New_Casesi = Casesi a Casesi_l Nc := New_Cases rows(New_Cases) = 61

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate

New_Casesi
rate. ;= 100 ——— Cases = 6424 rate := rate + 1
AW Re-1 rate = mean(rate) = 11.498
Casesi_1 A& angn (rate)
Calculate the Number of Days Dbl := _ W@ Days to Double: Dbl = 6.369
for Cases to Double - Dbl: Wl 1 rate,vg
n
100 Dbl_Days(JHyRc_l ,JHy,,Re, 0) =2.227

Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

a=1 k=001 c:=1 guess:=(a k ¢) gxi= (100 0.3) F(x,v,m):= vee™ * (y m) = genfit(dx, Hy, gx,F)"

M
T m-X N
(a, k g) = expfit(dx,JHy, guess) (a k ¢)=(155916 0.17 -244.651 Fe(x) := v-e Inl =
v
fifp) = ae X +c  m=0191  v=96221 Pop of S Koria: 51.5 Million AN = —

Ramy= m-10 — 1 =0.908

New Orleans - Total Cases/Day Daily Increase - Contained

4
110 2%10°
3
8 8<10 1.6x10°
% JHy 6 103
O eee & 1.2x10°
®  fit(x) 3 Nc
E 4x10 2 200
3
2x10 400
0
0
0 2 4 6 8101214 1618 20 22 24 26 28 30 03 4 6 810121416 18202294 26 28 30
dx, x
dx
. . —
SK Reproductive Ratio R, : LM := log(Cases) slope(dx, LM) = 0.129 Ry (0.053,10) = 1.53
New Orleans - Log Plot of Epidemic
1x10*
wn
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UK Data

https://ourworldindata.org/coronavirus-source-data

Cases := READPRN("UK Cases 3-1 to 4-19.txt") Rc := rows(Cases) j:=0..Rc—1 JGy := Cases
NMVWWWA N
Rc =50 i=1.Rc—-1 New_Casesi = Casesi - Casesi_1 Jij =] NCs := New_Cases

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate
NCs.

i 5
rate. .= 100 ————— Cases =1.142x 10 rate := rate + 1
Re-1 = =
AN Cases, | c I mean(rate) = 10.673
In(2)
Calculate the Number of Days Dbl ;= —mM8M———— Days toDouble: Dbl = 6.835
for Cases to Double - Dbl: Wl 1 rate, g
" oo Dbl_Days(JNyRc_l ,100,Re, o) =1
gx = (20 0.2)T F(x,v,m) = ve (v, m) = genfit(JGx,JGy, gx,F)T x(t) = V'Cm.t
m = 0.087 M: m-10 - 1 =-0.13
Exponential Growth ==> NY Epidemic
5 GB- Total Cases/Day Daily Increase
1.2x10% 3
1.1x10z 9x103 T
110} 8.1x10;
§ 9x10, 7.2x10;
8 gy 3% 6.3x10;
O oo 6X 4 5.4x10
- %10, 3
s XY 5x10, NCs  4.5¢10;
S ——  4x104 3.6¢10;
=~ 3x10,] 2.7><1O3
%x184 1.8x10
0 900
0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
JGx,t JGx
- - 4)
GB Reproductive Ratio Ry, : LM := log(Cases) slope(JGx,LM) = 0.075 R (0.106,10) = 2.06
GB: Left Log Exponential Fit & Cases, Right Linear Cases
1x10° 1x10°
w2
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o % fx(x)
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SEIRM Methodology: Estimate Outcome of the UK Epidemic

Our methodology is similar to most papers, the major difference is we use Mathcad's Sou= 66.4- 106~0.8
Error Minimization function Minerr, not Python, R, or MATLAB's Minimization Tool.

1 SV
SEIRM Model Mdl(B,Bm,te,N) = SEIRM(SO,23,B,Bm,te,2,§,N) Mod(B,Bm,te) = Mdl(B,Bm,teAS)
1 . . .
L= 5 Initial Guess (SIRD Params): (/@V Bm, Lo ) = (0.19 0.063 20)

Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual

Define a Residual to be the difference between the current data points HInf, HRec, HDed and SIRDModel
Residual( 3, Bm,te) = JGy - Mod(B, Bm,te) Rc =50 n:=0.Rc-1 rows(Mod(B, Bm,te)) =50
Condition to Minimize the Residual Least Squares Fit Error Using L-V Minerr Method
Given 0 = Residual(B,Bm,t) (b, bm, te) = Miner(B, Bm,te)T (b bm te)=(0.734 0.273 26.176)

ERR
g 100840 Rpi= — = 4.989 Roj= — = 1.857
L L
Extracted Parameters of GB COVID-19 Epidemic
Imax, Calculate Days to Double, D2X and Fit Power Function to USA JH Data
gx= 14 Fitbwr(ex,t) := JGy0~ext
e
Resid]Gy(ex) := JGy — FitPwr(ex,JGx)  Given 0 = Resid]Gy(ex) JEx:= Minerr(ex)  Ex=1.198
. . . ) _ ¢ _In(2)
Fit JHy with a Power Function, PWR(t): Pwi(t) := JGyo. Ex D2X(Ex) := In(T D2X(Ex) = 3.843
‘ 16
Dbl Days(9415,100,15,0) =2.288 |\ 12309 _ |, 0 -cr
. . . 1
The number of days it takes infections to double, t.,, tan= - ty, = 1.363 b =0.734
The number of days it takes to recover, t _0063 ¢ =+ ot -68 Ra= =4.825
y » lrec =0 eV 1 rec ~ - L+3d
Proj := Mdl(b,bm,te, 140) PIf = Proj<1> PRc = Proj<2> PS = Proj<0> Ds = Proj<3> max(Ds) = 36178.301
6 6
Rpi= 1ows(PIf) = 142 m:=0.R, ~1 Tot Deaths = ZDS Tot Deaths = 1.681 x 10 max(PIf) = 4.02 x 10
SEIRM Mitigation Scenario: Reasonably Good Match to UK Cases to Date
UK: Infection Cases vs. SEIRM Model Sus, Infections, and Rec
4x10° 2.4x10°
6 / / \\ 42.2x10°
3.5x10 5
/ / / 2«10
IGy, 6 5 JGy
eoe IO 1.8x105 Lo
Dl ) 50109 SIRM M L6107 Plf,
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Italy COVID19 Cases

Growth Data and Curve Fit for WHO COVID-19: Total Cases in ltaly

Source: CDC Data for Total Number of World Cases Reported to WHO (Virus is called (SARS-CoV-2)
https://en.wikipedia.org/wiki' Template:2019%E2%80%9320_coronavirus_outbreak_data/\WWHO _situation_reports

https:/iwww.statista.com/statistics/1101680/coronavirus-cases-development-italy/

Read Data File: WCases := READPRN("Italy COVID-19 Feb 21 to April 11 2020 Totals.txt")  Jly := WCases

Re = rows(WCases) Re=52 i=1.Rc—-1 k:=0.Rc—1 days.:=i rows(WCases) =52  rows(days) =58
i

WCasesp | = 1523 x 10° Calculate the Rate of Growth of Cases and Find Average WCases | =3
NCsi = WCasesi - WCasesi_1 New_Cases := NCs
NCSi 5
rate. := 100 ——— WCases =1.523 x 10" rate := rate + 1
WY Re—1 rate = mean(rate) = 14.861
WCases, | FaSanan (rate)
Calculate the Number of Days Dbl ;= _ @ Days to Double: Dbl = 5.003
- . rate
for Cases to Double - Dbl: ml 1. g j Using Exp It)ble Fn Method:
. . . 100 =N, =
Exponential Growth ==> Italy Epideniic Fn=Ny-ex Daysgople =8
k:=0.Rc-1 Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases
dzk =k gx:= (100 0.3 )T F(x,v,m) = ve (y, m):= genﬁt(dz,WCases,gx,F)T fx(d) = V-em'd
(a, k g)= expﬁt(dz,WCases,guess)T (a k ¢)=1(23369.425 0.042 -34277.269) fit(x) = aekX +c
Note: the larae increase dav 25 is because of a chanae in reportina from laboratorv confirmed to all confirmed.
Total Number of Cases/Day New Cases
5 3
1.6x10 - 8x10
1.4x10° / | 7%10° - :
WCases 1.2x10° 6x10° i _
EfL ) 1x10° 5107
x(x 8x10°* NCs  4x10°
4 o 3
fit(x) 6x10 Ny 3x10
4x10° 2x10°
w10 ——"7 1x10°
0 0
10 15 20 25 30 35 40 45 50 55 60 10 15 20 25 30 35 40 45 50 55 60
days, x,x days
) ) Ro =m10—1=-0344
Italy- Cases & Exp Fit - Lin&Log Scale & New Case5
1x10°
g
» Rll=========
a
' WCases . W
g e 1x10 o
S fit(days) W
L'S New_Cases 1><1O3 s
S —
(D]
2 ///:/\/_/
g 100 r~~
=
E /_/
10
0 5 10 15 20 25 30 35 40 45
days
Number of Days DblfDays(leRc_l ,JIyO,Rc,O) =3.327
—_

Italy Reproductive Ratio R, : LW := log(WCases) slope(days, LW) =1 Ry (0.04,10) = 1.4




Spain COVID19 Cases and Deaths

Growth Data and Curve Fit for WHO COVID-19: Total Cases in Spain

Source: CDC Data for Total Number of World Cases Reported to WHO (Virus is called (SARS-CoV-2)

Read Data File: https://ourworldindata.org/coronavirus-source-data
WCases, .= READPRN("Spain COVID-19 Feb 26 to April 23 CasesTotNew Deaths TN.txt" ) ISy := WCases<0>

R¢.:= rows(WCases) Rc=58 i:=1..Rc-1 /\lva: 0.Rc-1 dzk =k  rows(JSy) =58 WC := JSy daqsk =k

A

5
Vs = 20 10 Calculate the Rate of Growth of Cases and Find Average rows(dags) = 38

New Cases. .= WC. — WC.
- 1 1 i—-1

New_Cases, NCs := New_Cases

rate. = IOOT WCRc—l =2.084 x 105 rate := rate + 1 LS anen= mean(rate) = 13.605
i—1

Calculate the Number of Days Dbl = _ W@
ln(l +

Rate Days to Double: Dbl = 5.434
- . rate
for Cases to Double - Dbl: avgj Using Exp Dble Fn Method:

Dbl_Days(JSyRc_l ,JSyO,Rc,O) =3.903 100

t
Fn = NO-CX Daysdouble =1

Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

gx:= (100 03)"  F(x,v,m) = ve™ ™ (y, m) = genfit(dz, WC, gx, F)" (v m) = (11516074 0.05:fx(t) == v-e" '
(a, k g) = expfit(dz, WC, guess) (a k c)= (63344264 0.028 —84304.2fit(x) = ac’ " + ¢
Exponential Growth ==> Spain Epidemic Romay= ™10~ 1 =-0.46
Note: the large increase day 25 is because of a change in renortina from laboratorv confirmed to all confirmed.
Total Number of Cases/Day Number New Cases Daily
5 4
2><105 1x10
1.8<10] , I
1.6x10; 8x10
1.4x10] ,
we 1.2x10; 6x10
1x10 NCs
fx(dags)  g«10% o a0
— 4
6x10; ,
4><104 2x10
210
0 0
10 15 20 25 30 35 40 45 50 55 60 10 15 20 25 30 35 40 45 50 55 60
dags dags

Deaths := WCases<

Spain- Deaths

3x10°
2.5x107
2107
4
Deaths 1.5x10
L o o d
1x10*

5¢10°

Total Number of Deaths

0
10 15 20 25 30 35 40 45 50 55 60

dags
Spain Reproductive Ratio Ry : Ly = log(WC) slope(dags,LW) = 0.072 Ry (0.04,10) = 1.4




S Korea J. Hopkins Feb 20 - April 7: Quenched

JH_SK := READPRN("JHU S Korea Inf 2-20 to 4-7 - Cols.txt") ~ JHy:= JH_SK

Cases := JHy Rj:= rows(Cases) =48 p:=0.Rj—1 Re:=rows(Cases) Rc=48 i:=1.Rc-1

New_Casesi = Casesi - Casesi_ Jpr =p daysi =1 rows(Cases) =48 rows(days) = 58

1

Calculate the Rate of Growth of Cases, Find Average Rate, and Days to Double from Avg. Rate
New_Cases, := Cases, — Cases,

New_Cases. 1
rate. := 100 ——— Cases =10331 JHy, =280 rate = rate + 1
ANWWY Re-1 0 rate = mean(rate) = 9.803

Casesi_1 AAkSangn (rate)
Calculate the Number of Days Dbl := _ W@ Days to Double: Dbl = 7.412
for Cases to Double - Dbl: Wl 1 rate,vg
n 1+
100 Dbl_Days(JHyRc_l ,JHyO,Rc,O) = 6.845

Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

=1 k=001 g¢=1 guess:=(a k ¢) gc= (100 0.3) E(x,v,m) = v-e™ ™ (y, m) = genfit(JKx,JHy, gx,F)

a
AN M

(a, k ) = expfit(JKx, JHy, guess)]  (a k ¢)= (2.99 < 100 7477x 107 Fe(x):= ve ln(ﬂj
fit00 = ac ¥+ ¢ v=3298.003  PopofS Koria: 51.5 Million AN 1= — =
Rome= m-10 -1 =-0.72
S Korea - Total Cases/Day Daily Increase - Contained
1.2x10] 1x10°
i o |
©n 3
2 810 <=== Quenched!
& IHy 0 600)
2 YOO gﬁmi New_Cases
S fit0  5¢103 o - 400
c = i
X
2x10; 200
x10 .
0 5 10 15 20 25 30 35 40 45 5 0 5 10 15 20 25 30 35 40 45 50
JKx, x JKx

- - 4)
SK Reproductive Ratio R, : LM := log(Cases) slope(JKx,LM) = 0.028 Ry (0.053,10) = 1.53

S. Korea - Epidemic Contained: Log shows this is NO Longer Exponential
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Methodology to Extract Mitigation Parameters for S. Korea
S. Korea Applied Mitigation to Contain their COVID -19 Epidemic. Model their Mitigation.

(0

SEIRM Model Mdl(B8,Bm,N) := SEIRM(52~106,80,B,Bm,3,3.8,%,N) Mod(B,Bm) := Mdl(B, Bm,46)

Initial Guess (SIRD Params): (8, 8m) = (0.4 03) SA{M(SO’IO’B’Bmit’tel’z’w’N)

Use Quasi-Newton Method: Minimize Least Squares Error LSQFit = j Z( JHy - Model(8,7))°

Use Levenberg-Marquardt Method: Minimize Least Squares Error to Residual
Define a Residual to be the difference between the current data points JHy and SIRM Model

Residual(3, 3m) := JHy — Mod(3, 3m) R = rows(JHy) R =48

Condition to Minimize the Residual Least Squares Fit Error Using L-V Minerr Method

Given 0 = Residual(3, 3m) 0.1<B3<£04 0.0l <Bm<03
Use Minerr to Extract Optimal Parameters: (b, bm) := Minerr(f3, Ejm)T (b bm) =(1.248 0.163)
Infected
ERR
HIf = MdI(b.bm, 140)"" HRc = MdI(b.bm, 140)'2 HD = Mdl(b,bm, 140)" S = 83623
HS := MdI(b,bm, 140)<O> Nl%pV:: rows(HIf) = 142 max(HD) = 177.473

Good Match of SEIRM Mitigation Model (Symbols) to Data (Dots)

Model vs Data - S. Korea: Infected (Blue), Rec. (Green), Dead (Blk)

210" 6x107
1.75%10°
4 —4.8x10’
1.5x10
HDd,
JH 4
Yp  1.25x10 3.6x10” s,
Mty a0 HIf,
HRc 7 —
T 7500 24100 if,
5000 ;
71.2x10
2500,
0 0
0 10 20 30 40 50 60 70 80
P.4.9,9,9,9,9,9
Extracted Parameters of South Korea COVID-19 Epidemic
The number of days it takes infections to double, t.,, tr = 1 tyy = 0.801 3 := 0.005
h X MW
. 1
The number of days it takes to recover, t. to = n trec = 6.8
. . . b
Basic Reproductive Ratio Ro = Ros = Ry =5.94 Rog5 = 5.94
pr AT T e T Ro 08

before and after Intervention:



World COVID19 Cases

Growth Data and Curve Fit for WHO COVID-19: Total Cases in World

Source: CDC Data for Total Number of World Cases Reported to WHO (Virus is called (SARS-CoV-2)
https://en.wikipedia.org/wiki' Template:2019%E2%80%9320_coronavirus_outbreak_data/\WWHO _situation_reports

ReadDataFile:  W(Cases := READPRN("World COVID-19 Feb 1 to April 72020 Totals.txt") ~ JWy := WCases
Re = rows(WCases) Rc =67 i=1.Rc-1 daysi =1 rows(WCases) = 67 rows(days) = 67
Calculate the Rate of Growth of Cases and Find Average and Days to Double from Average Rate

WC := WCases WCRc—l =1317x 106 NewﬁCasesi = WCasesi - WCasesi_1 NewC := New_Cases
NewﬁCasesi 5
rate. '= 100 —— WCases_, =3.381 x 10 rate := rate + 1 rate = mean(rate) = 8.83
e WCases, | 51 FNTANEN (rate)
-1
Calculate the Number of Days bl = 2| 1l 1 rate, g Days toDouble: Dbl = 7.412
for Cases to Double - Db: RRby= (2)-| In| 1+ 100

DbliDays(JWyRc_l Wy . Re, 0) =9.875

Calculate Number of Days to Double (D2X) and Fit Power Function to World Data

t
FPr(ex,t) = WCO~ex ResW(ex) := WC — FPr(ex,days) Given 0 =ResW(ex) Ex:= Minerr(ex) D2X(Ex) = 9.825
Exponential Growth ==>World Epidemic Ramn= Ex10 — 1 =9.731

Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

(a, k g)= expﬁt(days,WCascs:s,guess)T (a k ¢)=1(2420.678 0.096 36065.512) Sit(x) = aekX +c

Note: the larae increase dav 25 is because of a chanae in renorting from laboratory confirmed to all confirmed.

Total Number of Cases/Day Daily % Rate of Growth
6 5
2><106 1><104
1.8x107 9x10,
o n
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1x10 ewC 5x10
LSO S TN T 4o
4103 10!
2x10 — 1x10
0 0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
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World- Cases & Exp Fit - Lin&Log Scale & New Cases
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)
A
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2
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8 fit(days) WCases
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s L 5%10 110
O
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Z
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World Reproductive Ratio Ry, : LW ;= log(WCases) slope(days,LW) = 0.025 Ry (0.04,10) = 1.4




Deaths: World, Fr, Ge, It, South Korea, Sp, Sw, UK, USA
Compare Deaths per Capita: USA Lower than Europe

Source: https://ourworldindata.org/coronavirus-source-data

Order of Data: World France Germany Italy South Korea Spain Sweden United Kingdom USA
Deaths := READPRN("Deaths World FR GE IT SK Sp UK US SW Feb 22 to April 19.txt")

Pop_Millions := (7580 66.9 83.7 60.4 52 46.728 10.2 66.48 327)TW’= 0.8

Re := rows(Deaths) Rc =58 i=1.Rc—-1 Total Death ZDeaths

Total Deaths = (2.2x 10° 2398 x 10° 47386 4488 10° 6542 3247 x 10° 15129 1636 10° 3.627x 10°)

_
(w
Deaths per Million, DpM: DpM< W &
Pop Mllhons
Wd = DpM<O> FR = DpM< Vo GE= DpM<2> IT = DpM<3> SK = DpM<4>
sp = DpM® swi= DpM®  UK:= DpM”  Us:= DpM®

Deaths per Million in Order of Largest to Smallest

Spain, Italy, France, UK, Sweden, US, Germany, World, S. Korea

Deaths/Million: Spain, Italy, France, UK, Sweden, US, Germany, World, S.Korea

1x10°

GE; 100]

10

SW;

UK,
Us;
AAA

0.1
0

i

Number of Days from February 22

The Order of the First Appearance of Deaths: World, South Korea, Italy. France, Spain, UK, US, SW, GE



World COVID19 Deaths

WD := READPRN("World Deaths OWD Feb 1 to April 30.txt" ) Re:=rows(WD) i=1.Rc—1
5 .
NewDi = WDi - WDi—l WDRc—l =2.271x 10 WCases :== WD IWy ;= WCases daysi =1

(a, k ¢) = expfit(days, WD, guess)"

Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

(a k ¢)=(2970.068 0.05 —10282.265)

fit(x) = ac< 4 ¢

Calculate the Rate of Growth of Cases and Find Average and Days to Double from Average Rate

WC := WCases New_Casesi = WCasesi - WCasesi_1 NewC := New_Cases
New_Cases.
rate. := 100 WCases_, = 14603 rate := rate + 1 rate = mean(rate) = 9.527
My WCases, | 51 AN E
Calculate the Number of Days rate,vg Days toDouble: Dbl = 8.192

for Cases to Double - Dbl:

=1 41
Dbl n(2)(n(l+ 100 jj

Dbl_Days(JWyRC_l JWy,.Re, 0) =9.206

Calculate Number of Days to Double (D2X) and Fit Power Function to World Data

t
FPr(ex,t) := WCO-eX

(a k g)= expﬁt(days,WCases,guess)T

——

ResW(ex) .= WC — FPr(ex,days)  Given 0 =ResW(ex) Ex:= Minerr(ex) D2X(Ex)=8.781

Exponential Growth ==> World Epidemic Rom= Ex-10 =1 =9.821

Calculate Parameters for Exponential Fit, fit(x), to Total Number of Cases

(a k ¢)=(2970.068 0.05 —10282.265)

fit(x) = ac< 4 ¢

Total Number of Cases/Day Daily % Rate of Growth
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Computational Tools - Computer Algebra Systems

This work started with the goal of understanding and predicting the dynamics of the COVI-19 disease.
Implementing this goal has required use of some foundational concepts and Mathematical Tools.

Foundational Concepts and Mathematical Tools

¢ Goal: Model Biological Transmission, Inmune System, and Compartmental Population Dynamics

¢ Analyzing Dynamics Requires Non Linear Differential Equations, NLDE

¢ Delayed Differential Equations, DDE, are a great model for COVID-19's incubation and latent properties

4 Recently, the Mathematics of Neural Networks to expands understanding Emergent Properties of Systems

¢ Classical (Newtonian) Analytic Methods work well only for idealized systems, e.g. Planetary Motion

4 Most curves/dynamics are not analytic and thus not tractable with Analytic Ordinary Differential Equations
¢ Population Dynamics for infectious disease transmission are fundamentally Statistical/Stocastic processes

¢ Analysis of these systems requires a Twentieth-Century Math Approach, TCMA

¢ Twentieth-Century Approach employs Numeric Computer Solution Methods, such as Euler's Method

¢ Software is the foundational component in Computer Methods

¢ I started this work with the Engineering Computational Algebra Software, Mathcad, as the Modeling Tool

4 Mathcad could not implement Delayed Differential Equations or some of the Stochastic Methods

¢ Had to investigate other tools: Mathematica, MatLab, R, Python, Maple

4 Mathematica is Symbolic and has great horsepower, but it is a little too tempermental for my taste

¢ MatLab is more of an Engineering Matrix Approach and could require expensive additional Math Packages
+ R has the statistical packages, but its front end and graphing are limited.

4 Python is a programming/text language, not primarily Symbolic or Mathematical. Attention to details is tedious.
¢ Maple, while not ideal for my purposes, has the required horsepower, such as DDE Solving Capability.

4 Maple's Computation Engine uses more of a Mathematical, Symbolic Programming approach than Mathcad.

Retooling at Mid-Course
This work was started with, and is documented with Mathcad.
However, some of the later computational work, such as DDEs were done with Maple
2020. After solving DDE models in Maple, the form of the Mathematical Model and
results of the calculations were then transferred to Mathcad for plot presentation and
documentation.

Limitations of Least Squares Parameter Extraction Method
Does not assume any error distribution
Assmes that parameter extraction does not depend on the order of infections
Assumes positive and negative deviations are equivalent
Number of new cases at different times is probably not independent
Cannot give any statistical information
It is better to use a Statistical Maximum Log-Likelihood Method

Calculate R0
Number of secondary infectives per primary infective per generation 1/y. . = BN
0=
N
Notes

Discrete epidemic models with arbitrary stage distributions and applications to disease
control.
GDM: SEQIHR Model - Q: Quarateened, Not Inf, H=Isolated
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